A deep learning-driven cataract screening model derived from multicenter real-world dataset Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3389/fmed.2025.1691419
Introduction Cataracts, the leading cause of reversible blindness globally, require timely detection and intervention for effective prevention of blindness. Artificial intelligence can assist in massive screening, however, existing models often trained on homogeneous, single-center data, suer from poor generalizability. Methods To address this challenge, we developed and validated a deep learning model trained on a large-scale, multicenter, real-world dataset comprising 22,094 slit-lamp images from 21 ophthalmic institutions across 12 provinces and municipalities in China. We designed a cascaded framework that emulates the sequential reasoning of a clinical diagnostic workflow, a methodological approach for ensuring reliability on noisy, real-world data. It first performs an automated quality assessment, then screens for common confounders like pterygium, and finally conducts a differential diagnosis among cataract, post-cataract surgery, other ocular diseases, and healthy eyes. Within this framework, we evaluated several deep learning architectures. Results In the cataract classification task, the leading models demonstrated excellent performance on an independent test set. For instance, the ResNet50-IBN based model achieved an accuracy of 93.74%, specificity of 97.74% and an area under the curve (AUC) of 95.30%. Discussion This study demonstrates that training on multicenter, real-world data yields a robust and generalizable model, providing a powerful tool for largescale ophthalmic screening. Specifically, our model establishes a methodological blueprint for developing trustworthy medical deep learning systems.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3389/fmed.2025.1691419
- https://public-pages-files-2025.frontiersin.org/journals/medicine/articles/10.3389/fmed.2025.1691419/pdf
- OA Status
- gold
- References
- 23
- OpenAlex ID
- https://openalex.org/W4416770060
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416770060Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/fmed.2025.1691419Digital Object Identifier
- Title
-
A deep learning-driven cataract screening model derived from multicenter real-world datasetWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-27Full publication date if available
- Authors
-
Zhelin Cui, Cheng Yu, Shaohua Pan, Yong Zhu, Weiwei DaiList of authors in order
- Landing page
-
https://doi.org/10.3389/fmed.2025.1691419Publisher landing page
- PDF URL
-
https://public-pages-files-2025.frontiersin.org/journals/medicine/articles/10.3389/fmed.2025.1691419/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://public-pages-files-2025.frontiersin.org/journals/medicine/articles/10.3389/fmed.2025.1691419/pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
23Number of works referenced by this work
Full payload
| id | https://openalex.org/W4416770060 |
|---|---|
| doi | https://doi.org/10.3389/fmed.2025.1691419 |
| ids.doi | https://doi.org/10.3389/fmed.2025.1691419 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/41393146 |
| ids.openalex | https://openalex.org/W4416770060 |
| fwci | |
| type | article |
| title | A deep learning-driven cataract screening model derived from multicenter real-world dataset |
| biblio.issue | |
| biblio.volume | 12 |
| biblio.last_page | 1691419 |
| biblio.first_page | 1691419 |
| is_xpac | False |
| apc_list.value | 2490 |
| apc_list.currency | USD |
| apc_list.value_usd | 2490 |
| apc_paid.value | 2490 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2490 |
| language | en |
| locations[0].id | doi:10.3389/fmed.2025.1691419 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2597052008 |
| locations[0].source.issn | 2296-858X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2296-858X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Medicine |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_lineage_names | Frontiers Media |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://public-pages-files-2025.frontiersin.org/journals/medicine/articles/10.3389/fmed.2025.1691419/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Medicine |
| locations[0].landing_page_url | https://doi.org/10.3389/fmed.2025.1691419 |
| locations[1].id | pmid:41393146 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Frontiers in medicine |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/41393146 |
| locations[2].id | pmh:oai:doaj.org/article:2544f694e584434ea0480be488f53d48 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Frontiers in Medicine, Vol 12 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/2544f694e584434ea0480be488f53d48 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:12695777 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Front Med (Lausanne) |
| locations[3].landing_page_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC12695777/ |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5035841361 |
| authorships[0].author.orcid | https://orcid.org/0009-0004-5515-5322 |
| authorships[0].author.display_name | Zhelin Cui |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I197869895, https://openalex.org/I4210149412 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China |
| authorships[0].institutions[0].id | https://openalex.org/I197869895 |
| authorships[0].institutions[0].ror | https://ror.org/03xb04968 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I197869895 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Anhui Medical University |
| authorships[0].institutions[1].id | https://openalex.org/I4210149412 |
| authorships[0].institutions[1].ror | https://ror.org/047aw1y82 |
| authorships[0].institutions[1].type | healthcare |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210149412 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Second Hospital of Anhui Medical University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhonghui Cui |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China |
| authorships[1].author.id | https://openalex.org/A5026930299 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1039-1300 |
| authorships[1].author.display_name | Cheng Yu |
| authorships[1].affiliations[0].raw_affiliation_string | Institute of Digital Ophthalmology and Visual Science, Changsha Aier Eye Hospital, Changsha, China |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yu Cheng |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Institute of Digital Ophthalmology and Visual Science, Changsha Aier Eye Hospital, Changsha, China |
| authorships[2].author.id | https://openalex.org/A5090153413 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6261-5268 |
| authorships[2].author.display_name | Shaohua Pan |
| authorships[2].affiliations[0].raw_affiliation_string | Institute of Digital Ophthalmology and Visual Science, Changsha Aier Eye Hospital, Changsha, China |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Siqi Pan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Institute of Digital Ophthalmology and Visual Science, Changsha Aier Eye Hospital, Changsha, China |
| authorships[3].author.id | https://openalex.org/A5000312734 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9806-1965 |
| authorships[3].author.display_name | Yong Zhu |
| authorships[3].affiliations[0].raw_affiliation_string | Institute of Digital Ophthalmology and Visual Science, Changsha Aier Eye Hospital, Changsha, China |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yong Zhu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Institute of Digital Ophthalmology and Visual Science, Changsha Aier Eye Hospital, Changsha, China |
| authorships[4].author.id | https://openalex.org/A5102789464 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3375-0249 |
| authorships[4].author.display_name | Weiwei Dai |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I139660479 |
| authorships[4].affiliations[0].raw_affiliation_string | Aier Academy of Ophthalmology, Central South University, Changsha, China |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I197869895, https://openalex.org/I4210149412 |
| authorships[4].affiliations[1].raw_affiliation_string | Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China |
| authorships[4].affiliations[2].raw_affiliation_string | Institute of Digital Ophthalmology and Visual Science, Changsha Aier Eye Hospital, Changsha, China |
| authorships[4].institutions[0].id | https://openalex.org/I197869895 |
| authorships[4].institutions[0].ror | https://ror.org/03xb04968 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I197869895 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Anhui Medical University |
| authorships[4].institutions[1].id | https://openalex.org/I139660479 |
| authorships[4].institutions[1].ror | https://ror.org/00f1zfq44 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I139660479 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Central South University |
| authorships[4].institutions[2].id | https://openalex.org/I4210149412 |
| authorships[4].institutions[2].ror | https://ror.org/047aw1y82 |
| authorships[4].institutions[2].type | healthcare |
| authorships[4].institutions[2].lineage | https://openalex.org/I4210149412 |
| authorships[4].institutions[2].country_code | CN |
| authorships[4].institutions[2].display_name | Second Hospital of Anhui Medical University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Weiwei Dai |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Aier Academy of Ophthalmology, Central South University, Changsha, China, Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China, Institute of Digital Ophthalmology and Visual Science, Changsha Aier Eye Hospital, Changsha, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://public-pages-files-2025.frontiersin.org/journals/medicine/articles/10.3389/fmed.2025.1691419/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-28T00:00:00 |
| display_name | A deep learning-driven cataract screening model derived from multicenter real-world dataset |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-16T23:48:00.217561 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3389/fmed.2025.1691419 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2597052008 |
| best_oa_location.source.issn | 2296-858X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2296-858X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Medicine |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_lineage_names | Frontiers Media |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://public-pages-files-2025.frontiersin.org/journals/medicine/articles/10.3389/fmed.2025.1691419/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Medicine |
| best_oa_location.landing_page_url | https://doi.org/10.3389/fmed.2025.1691419 |
| primary_location.id | doi:10.3389/fmed.2025.1691419 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2597052008 |
| primary_location.source.issn | 2296-858X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2296-858X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Medicine |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_lineage_names | Frontiers Media |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://public-pages-files-2025.frontiersin.org/journals/medicine/articles/10.3389/fmed.2025.1691419/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Medicine |
| primary_location.landing_page_url | https://doi.org/10.3389/fmed.2025.1691419 |
| publication_date | 2025-11-27 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2980793487, https://openalex.org/W3110220146, https://openalex.org/W4211201440, https://openalex.org/W1838629939, https://openalex.org/W2059033740, https://openalex.org/W2106879392, https://openalex.org/W2122239414, https://openalex.org/W2054992874, https://openalex.org/W4226282784, https://openalex.org/W4401110165, https://openalex.org/W4220751870, https://openalex.org/W4390532368, https://openalex.org/W3088976029, https://openalex.org/W3023493324, https://openalex.org/W2884366600, https://openalex.org/W2982580298, https://openalex.org/W2886934227, https://openalex.org/W2963446712, https://openalex.org/W4405898246, https://openalex.org/W4387917955, https://openalex.org/W4391470418, https://openalex.org/W3177364048, https://openalex.org/W4312187321 |
| referenced_works_count | 23 |
| abstract_inverted_index.a | 48, 54, 76, 85, 89, 116, 189, 195, 206 |
| abstract_inverted_index.12 | 68 |
| abstract_inverted_index.21 | 64 |
| abstract_inverted_index.In | 139 |
| abstract_inverted_index.It | 99 |
| abstract_inverted_index.To | 40 |
| abstract_inverted_index.We | 74 |
| abstract_inverted_index.an | 102, 151, 162, 170 |
| abstract_inverted_index.in | 23, 72 |
| abstract_inverted_index.of | 5, 17, 84, 164, 167, 176 |
| abstract_inverted_index.on | 31, 53, 95, 150, 184 |
| abstract_inverted_index.we | 44, 132 |
| abstract_inverted_index.For | 155 |
| abstract_inverted_index.and | 12, 46, 70, 113, 126, 169, 191 |
| abstract_inverted_index.can | 21 |
| abstract_inverted_index.for | 14, 92, 108, 198, 209 |
| abstract_inverted_index.our | 203 |
| abstract_inverted_index.the | 2, 81, 140, 144, 157, 173 |
| abstract_inverted_index.This | 179 |
| abstract_inverted_index.area | 171 |
| abstract_inverted_index.data | 187 |
| abstract_inverted_index.deep | 49, 135, 213 |
| abstract_inverted_index.from | 36, 63 |
| abstract_inverted_index.like | 111 |
| abstract_inverted_index.poor | 37 |
| abstract_inverted_index.set. | 154 |
| abstract_inverted_index.suer | 35 |
| abstract_inverted_index.test | 153 |
| abstract_inverted_index.that | 79, 182 |
| abstract_inverted_index.then | 106 |
| abstract_inverted_index.this | 42, 130 |
| abstract_inverted_index.tool | 197 |
| abstract_inverted_index.(AUC) | 175 |
| abstract_inverted_index.among | 119 |
| abstract_inverted_index.based | 159 |
| abstract_inverted_index.cause | 4 |
| abstract_inverted_index.curve | 174 |
| abstract_inverted_index.data, | 34 |
| abstract_inverted_index.data. | 98 |
| abstract_inverted_index.eyes. | 128 |
| abstract_inverted_index.first | 100 |
| abstract_inverted_index.model | 51, 160, 204 |
| abstract_inverted_index.often | 29 |
| abstract_inverted_index.other | 123 |
| abstract_inverted_index.study | 180 |
| abstract_inverted_index.task, | 143 |
| abstract_inverted_index.under | 172 |
| abstract_inverted_index.22,094 | 60 |
| abstract_inverted_index.97.74% | 168 |
| abstract_inverted_index.China. | 73 |
| abstract_inverted_index.Within | 129 |
| abstract_inverted_index.across | 67 |
| abstract_inverted_index.assist | 22 |
| abstract_inverted_index.common | 109 |
| abstract_inverted_index.images | 62 |
| abstract_inverted_index.model, | 193 |
| abstract_inverted_index.models | 28, 146 |
| abstract_inverted_index.noisy, | 96 |
| abstract_inverted_index.ocular | 124 |
| abstract_inverted_index.robust | 190 |
| abstract_inverted_index.timely | 10 |
| abstract_inverted_index.yields | 188 |
| abstract_inverted_index.93.74%, | 165 |
| abstract_inverted_index.95.30%. | 177 |
| abstract_inverted_index.Methods | 39 |
| abstract_inverted_index.Results | 138 |
| abstract_inverted_index.address | 41 |
| abstract_inverted_index.dataset | 58 |
| abstract_inverted_index.finally | 114 |
| abstract_inverted_index.healthy | 127 |
| abstract_inverted_index.leading | 3, 145 |
| abstract_inverted_index.massive | 24 |
| abstract_inverted_index.medical | 212 |
| abstract_inverted_index.quality | 104 |
| abstract_inverted_index.require | 9 |
| abstract_inverted_index.screens | 107 |
| abstract_inverted_index.several | 134 |
| abstract_inverted_index.trained | 30, 52 |
| abstract_inverted_index.accuracy | 163 |
| abstract_inverted_index.achieved | 161 |
| abstract_inverted_index.approach | 91 |
| abstract_inverted_index.cascaded | 77 |
| abstract_inverted_index.cataract | 141 |
| abstract_inverted_index.clinical | 86 |
| abstract_inverted_index.conducts | 115 |
| abstract_inverted_index.designed | 75 |
| abstract_inverted_index.emulates | 80 |
| abstract_inverted_index.ensuring | 93 |
| abstract_inverted_index.existing | 27 |
| abstract_inverted_index.however, | 26 |
| abstract_inverted_index.learning | 50, 136, 214 |
| abstract_inverted_index.performs | 101 |
| abstract_inverted_index.powerful | 196 |
| abstract_inverted_index.surgery, | 122 |
| abstract_inverted_index.systems. | 215 |
| abstract_inverted_index.training | 183 |
| abstract_inverted_index.automated | 103 |
| abstract_inverted_index.blindness | 7 |
| abstract_inverted_index.blueprint | 208 |
| abstract_inverted_index.cataract, | 120 |
| abstract_inverted_index.detection | 11 |
| abstract_inverted_index.developed | 45 |
| abstract_inverted_index.diagnosis | 118 |
| abstract_inverted_index.diseases, | 125 |
| abstract_inverted_index.effective | 15 |
| abstract_inverted_index.evaluated | 133 |
| abstract_inverted_index.excellent | 148 |
| abstract_inverted_index.framework | 78 |
| abstract_inverted_index.globally, | 8 |
| abstract_inverted_index.instance, | 156 |
| abstract_inverted_index.providing | 194 |
| abstract_inverted_index.provinces | 69 |
| abstract_inverted_index.reasoning | 83 |
| abstract_inverted_index.slit-lamp | 61 |
| abstract_inverted_index.validated | 47 |
| abstract_inverted_index.workflow, | 88 |
| abstract_inverted_index.Artificial | 19 |
| abstract_inverted_index.Cataracts, | 1 |
| abstract_inverted_index.Discussion | 178 |
| abstract_inverted_index.blindness. | 18 |
| abstract_inverted_index.challenge, | 43 |
| abstract_inverted_index.comprising | 59 |
| abstract_inverted_index.developing | 210 |
| abstract_inverted_index.diagnostic | 87 |
| abstract_inverted_index.framework, | 131 |
| abstract_inverted_index.largescale | 199 |
| abstract_inverted_index.ophthalmic | 65, 200 |
| abstract_inverted_index.prevention | 16 |
| abstract_inverted_index.pterygium, | 112 |
| abstract_inverted_index.real-world | 57, 97, 186 |
| abstract_inverted_index.reversible | 6 |
| abstract_inverted_index.screening, | 25 |
| abstract_inverted_index.screening. | 201 |
| abstract_inverted_index.sequential | 82 |
| abstract_inverted_index.assessment, | 105 |
| abstract_inverted_index.confounders | 110 |
| abstract_inverted_index.establishes | 205 |
| abstract_inverted_index.independent | 152 |
| abstract_inverted_index.performance | 149 |
| abstract_inverted_index.reliability | 94 |
| abstract_inverted_index.specificity | 166 |
| abstract_inverted_index.trustworthy | 211 |
| abstract_inverted_index.Introduction | 0 |
| abstract_inverted_index.ResNet50-IBN | 158 |
| abstract_inverted_index.demonstrated | 147 |
| abstract_inverted_index.demonstrates | 181 |
| abstract_inverted_index.differential | 117 |
| abstract_inverted_index.homogeneous, | 32 |
| abstract_inverted_index.institutions | 66 |
| abstract_inverted_index.intelligence | 20 |
| abstract_inverted_index.intervention | 13 |
| abstract_inverted_index.large-scale, | 55 |
| abstract_inverted_index.multicenter, | 56, 185 |
| abstract_inverted_index.Specifically, | 202 |
| abstract_inverted_index.generalizable | 192 |
| abstract_inverted_index.post-cataract | 121 |
| abstract_inverted_index.single-center | 33 |
| abstract_inverted_index.architectures. | 137 |
| abstract_inverted_index.classification | 142 |
| abstract_inverted_index.methodological | 90, 207 |
| abstract_inverted_index.municipalities | 71 |
| abstract_inverted_index.generalizability. | 38 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5102789464 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I139660479, https://openalex.org/I197869895, https://openalex.org/I4210149412 |
| citation_normalized_percentile |