A Deep Learning Framework for Spatiotemporal Ultrasound Localization Microscopy Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1109/tmi.2021.3056951
Ultrasound Localization Microscopy (ULM) can resolve the microvascular bed down to a few micrometers. To achieve such performance, microbubble contrast agents must perfuse the entire microvascular network. Microbubbles are then located individually and tracked over time to sample individual vessels, typically over hundreds of thousands of images. To overcome the fundamental limit of diffraction and achieve a dense reconstruction of the network, low microbubble concentrations must be used, which leads to acquisitions lasting several minutes. Conventional processing pipelines are currently unable to deal with interference from multiple nearby microbubbles, further reducing achievable concentrations. This work overcomes this problem by proposing a Deep Learning approach to recover dense vascular networks from ultrasound acquisitions with high microbubble concentrations. A realistic mouse brain microvascular network, segmented from 2-photon microscopy, was used to train a three-dimensional convolutional neural network (CNN) based on a V-net architecture. Ultrasound data sets from multiple microbubbles flowing through the microvascular network were simulated and used as ground truth to train the 3D CNN to track microbubbles. The 3D-CNN approach was validated in silico using a subset of the data and in vivo in a rat brain. In silico, the CNN reconstructed vascular networks with higher precision (81%) than a conventional ULM framework (70%). In vivo, the CNN could resolve micro vessels as small as 10 μ m with an improvement in resolution when compared against a conventional approach.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/tmi.2021.3056951
- OA Status
- green
- Cited By
- 89
- References
- 53
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3127471220
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3127471220Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/tmi.2021.3056951Digital Object Identifier
- Title
-
A Deep Learning Framework for Spatiotemporal Ultrasound Localization MicroscopyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-02-03Full publication date if available
- Authors
-
Léo Milecki, Jonathan Porée, Hatim Belgharbi, Chloé Bourquin, Rafat Damseh, Patrick Delafontaine-Martel, Frédéric Lesage, Maxime Gasse, Jean ProvostList of authors in order
- Landing page
-
https://doi.org/10.1109/tmi.2021.3056951Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2310.08143Direct OA link when available
- Concepts
-
Microbubbles, Convolutional neural network, Computer science, Artificial intelligence, Deep learning, Ground truth, Microscopy, Computer vision, In silico, Ultrasound, Biomedical engineering, Pattern recognition (psychology), Physics, Optics, Chemistry, Acoustics, Medicine, Biochemistry, GeneTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
89Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 18, 2024: 24, 2023: 17, 2022: 21, 2021: 9Per-year citation counts (last 5 years)
- References (count)
-
53Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3127471220 |
|---|---|
| doi | https://doi.org/10.1109/tmi.2021.3056951 |
| ids.doi | https://doi.org/10.1109/tmi.2021.3056951 |
| ids.mag | 3127471220 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/33534705 |
| ids.openalex | https://openalex.org/W3127471220 |
| fwci | 6.56056309 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000818 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Animals |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000077321 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Deep Learning |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D007091 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Image Processing, Computer-Assisted |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D051379 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Mice |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D045423 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Microbubbles |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D008853 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Microscopy |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D016571 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Neural Networks, Computer |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D014463 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Ultrasonography |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D000818 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Animals |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000077321 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Deep Learning |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D007091 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Image Processing, Computer-Assisted |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D051379 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Mice |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D045423 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Microbubbles |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D008853 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Microscopy |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D016571 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Neural Networks, Computer |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D014463 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Ultrasonography |
| type | article |
| title | A Deep Learning Framework for Spatiotemporal Ultrasound Localization Microscopy |
| biblio.issue | 5 |
| biblio.volume | 40 |
| biblio.last_page | 1437 |
| biblio.first_page | 1428 |
| topics[0].id | https://openalex.org/T12015 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Photoacoustic and Ultrasonic Imaging |
| topics[1].id | https://openalex.org/T10958 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9997000098228455 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Ultrasound and Hyperthermia Applications |
| topics[2].id | https://openalex.org/T10727 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9997000098228455 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Ultrasound Imaging and Elastography |
| funders[0].id | https://openalex.org/F4320312160 |
| funders[0].ror | |
| funders[0].display_name | Réseau en Bio-Imagerie du Quebec |
| funders[1].id | https://openalex.org/F4320326644 |
| funders[1].ror | |
| funders[1].display_name | Canada First Research Excellence Fund |
| funders[2].id | https://openalex.org/F4320330273 |
| funders[2].ror | |
| funders[2].display_name | Institut de Valorisation des Données |
| funders[3].id | https://openalex.org/F4320334841 |
| funders[3].ror | https://ror.org/00b9f9778 |
| funders[3].display_name | Fonds de recherche du Québec – Nature et technologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C64012434 |
| concepts[0].level | 3 |
| concepts[0].score | 0.84819495677948 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6839290 |
| concepts[0].display_name | Microbubbles |
| concepts[1].id | https://openalex.org/C81363708 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7583342790603638 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[1].display_name | Convolutional neural network |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6827355027198792 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6303447484970093 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C108583219 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5954316854476929 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[4].display_name | Deep learning |
| concepts[5].id | https://openalex.org/C146849305 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5746631026268005 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q370766 |
| concepts[5].display_name | Ground truth |
| concepts[6].id | https://openalex.org/C147080431 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5332189798355103 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1074953 |
| concepts[6].display_name | Microscopy |
| concepts[7].id | https://openalex.org/C31972630 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4679053723812103 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[7].display_name | Computer vision |
| concepts[8].id | https://openalex.org/C2775905019 |
| concepts[8].level | 3 |
| concepts[8].score | 0.42922258377075195 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q192572 |
| concepts[8].display_name | In silico |
| concepts[9].id | https://openalex.org/C143753070 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4262126684188843 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q162564 |
| concepts[9].display_name | Ultrasound |
| concepts[10].id | https://openalex.org/C136229726 |
| concepts[10].level | 1 |
| concepts[10].score | 0.37242430448532104 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q327092 |
| concepts[10].display_name | Biomedical engineering |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3706768751144409 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.14056143164634705 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C120665830 |
| concepts[13].level | 1 |
| concepts[13].score | 0.13566270470619202 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[13].display_name | Optics |
| concepts[14].id | https://openalex.org/C185592680 |
| concepts[14].level | 0 |
| concepts[14].score | 0.11659294366836548 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[14].display_name | Chemistry |
| concepts[15].id | https://openalex.org/C24890656 |
| concepts[15].level | 1 |
| concepts[15].score | 0.09312975406646729 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q82811 |
| concepts[15].display_name | Acoustics |
| concepts[16].id | https://openalex.org/C71924100 |
| concepts[16].level | 0 |
| concepts[16].score | 0.08292585611343384 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[16].display_name | Medicine |
| concepts[17].id | https://openalex.org/C55493867 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[17].display_name | Biochemistry |
| concepts[18].id | https://openalex.org/C104317684 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[18].display_name | Gene |
| keywords[0].id | https://openalex.org/keywords/microbubbles |
| keywords[0].score | 0.84819495677948 |
| keywords[0].display_name | Microbubbles |
| keywords[1].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[1].score | 0.7583342790603638 |
| keywords[1].display_name | Convolutional neural network |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6827355027198792 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6303447484970093 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/deep-learning |
| keywords[4].score | 0.5954316854476929 |
| keywords[4].display_name | Deep learning |
| keywords[5].id | https://openalex.org/keywords/ground-truth |
| keywords[5].score | 0.5746631026268005 |
| keywords[5].display_name | Ground truth |
| keywords[6].id | https://openalex.org/keywords/microscopy |
| keywords[6].score | 0.5332189798355103 |
| keywords[6].display_name | Microscopy |
| keywords[7].id | https://openalex.org/keywords/computer-vision |
| keywords[7].score | 0.4679053723812103 |
| keywords[7].display_name | Computer vision |
| keywords[8].id | https://openalex.org/keywords/in-silico |
| keywords[8].score | 0.42922258377075195 |
| keywords[8].display_name | In silico |
| keywords[9].id | https://openalex.org/keywords/ultrasound |
| keywords[9].score | 0.4262126684188843 |
| keywords[9].display_name | Ultrasound |
| keywords[10].id | https://openalex.org/keywords/biomedical-engineering |
| keywords[10].score | 0.37242430448532104 |
| keywords[10].display_name | Biomedical engineering |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.3706768751144409 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/physics |
| keywords[12].score | 0.14056143164634705 |
| keywords[12].display_name | Physics |
| keywords[13].id | https://openalex.org/keywords/optics |
| keywords[13].score | 0.13566270470619202 |
| keywords[13].display_name | Optics |
| keywords[14].id | https://openalex.org/keywords/chemistry |
| keywords[14].score | 0.11659294366836548 |
| keywords[14].display_name | Chemistry |
| keywords[15].id | https://openalex.org/keywords/acoustics |
| keywords[15].score | 0.09312975406646729 |
| keywords[15].display_name | Acoustics |
| keywords[16].id | https://openalex.org/keywords/medicine |
| keywords[16].score | 0.08292585611343384 |
| keywords[16].display_name | Medicine |
| language | en |
| locations[0].id | doi:10.1109/tmi.2021.3056951 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S58069681 |
| locations[0].source.issn | 0278-0062, 1558-254X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0278-0062 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEEE Transactions on Medical Imaging |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Transactions on Medical Imaging |
| locations[0].landing_page_url | https://doi.org/10.1109/tmi.2021.3056951 |
| locations[1].id | pmid:33534705 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | IEEE transactions on medical imaging |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/33534705 |
| locations[2].id | pmh:oai:arXiv.org:2310.08143 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | https://arxiv.org/pdf/2310.08143 |
| locations[2].version | submittedVersion |
| locations[2].raw_type | text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://arxiv.org/abs/2310.08143 |
| locations[3].id | pmh:oai:publications.polymtl.ca:48032 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401013 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PolyPublie (École Polytechnique de Montréal) |
| locations[3].source.host_organization | https://openalex.org/I45683168 |
| locations[3].source.host_organization_name | Polytechnique Montréal |
| locations[3].source.host_organization_lineage | https://openalex.org/I45683168 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | PeerReviewed |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://publications.polymtl.ca/48032/ |
| indexed_in | arxiv, crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5024025086 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5536-8839 |
| authorships[0].author.display_name | Léo Milecki |
| authorships[0].countries | CA, FR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I277688954, https://openalex.org/I4210107720 |
| authorships[0].affiliations[0].raw_affiliation_string | Mathématiques et Informatique pour la Complexité et les Systèmes, CentraleSupélec, Université Paris-Saclay, Inria Saclay, Gif-sur-Yvette, France |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I45683168 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Engineering Physics, Polytechnique Montréal, Montréal, Canada |
| authorships[0].institutions[0].id | https://openalex.org/I45683168 |
| authorships[0].institutions[0].ror | https://ror.org/05f8d4e86 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I45683168 |
| authorships[0].institutions[0].country_code | CA |
| authorships[0].institutions[0].display_name | Polytechnique Montréal |
| authorships[0].institutions[1].id | https://openalex.org/I4210107720 |
| authorships[0].institutions[1].ror | https://ror.org/019tcpt25 |
| authorships[0].institutions[1].type | facility |
| authorships[0].institutions[1].lineage | https://openalex.org/I277688954, https://openalex.org/I4210107720 |
| authorships[0].institutions[1].country_code | FR |
| authorships[0].institutions[1].display_name | CentraleSupélec |
| authorships[0].institutions[2].id | https://openalex.org/I277688954 |
| authorships[0].institutions[2].ror | https://ror.org/03xjwb503 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I277688954 |
| authorships[0].institutions[2].country_code | FR |
| authorships[0].institutions[2].display_name | Université Paris-Saclay |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Leo Milecki |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Engineering Physics, Polytechnique Montréal, Montréal, Canada, Mathématiques et Informatique pour la Complexité et les Systèmes, CentraleSupélec, Université Paris-Saclay, Inria Saclay, Gif-sur-Yvette, France |
| authorships[1].author.id | https://openalex.org/A5070220593 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4179-9264 |
| authorships[1].author.display_name | Jonathan Porée |
| authorships[1].countries | CA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I45683168 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Engineering Physics, Polytechnique Montréal, Montréal, Canada |
| authorships[1].institutions[0].id | https://openalex.org/I45683168 |
| authorships[1].institutions[0].ror | https://ror.org/05f8d4e86 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I45683168 |
| authorships[1].institutions[0].country_code | CA |
| authorships[1].institutions[0].display_name | Polytechnique Montréal |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jonathan Poree |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Engineering Physics, Polytechnique Montréal, Montréal, Canada |
| authorships[2].author.id | https://openalex.org/A5018935385 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9534-1796 |
| authorships[2].author.display_name | Hatim Belgharbi |
| authorships[2].countries | CA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I45683168 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Engineering Physics, Polytechnique Montréal, Montréal, Canada |
| authorships[2].institutions[0].id | https://openalex.org/I45683168 |
| authorships[2].institutions[0].ror | https://ror.org/05f8d4e86 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I45683168 |
| authorships[2].institutions[0].country_code | CA |
| authorships[2].institutions[0].display_name | Polytechnique Montréal |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hatim Belgharbi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Engineering Physics, Polytechnique Montréal, Montréal, Canada |
| authorships[3].author.id | https://openalex.org/A5066557182 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1360-0692 |
| authorships[3].author.display_name | Chloé Bourquin |
| authorships[3].countries | CA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I45683168 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Engineering Physics, Polytechnique Montréal, Montréal, Canada |
| authorships[3].institutions[0].id | https://openalex.org/I45683168 |
| authorships[3].institutions[0].ror | https://ror.org/05f8d4e86 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I45683168 |
| authorships[3].institutions[0].country_code | CA |
| authorships[3].institutions[0].display_name | Polytechnique Montréal |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Chloe Bourquin |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Engineering Physics, Polytechnique Montréal, Montréal, Canada |
| authorships[4].author.id | https://openalex.org/A5079507190 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6797-0448 |
| authorships[4].author.display_name | Rafat Damseh |
| authorships[4].countries | CA |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I45683168 |
| authorships[4].affiliations[0].raw_affiliation_string | Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, Canada |
| authorships[4].institutions[0].id | https://openalex.org/I45683168 |
| authorships[4].institutions[0].ror | https://ror.org/05f8d4e86 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I45683168 |
| authorships[4].institutions[0].country_code | CA |
| authorships[4].institutions[0].display_name | Polytechnique Montréal |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Rafat Damseh |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, Canada |
| authorships[5].author.id | https://openalex.org/A5025218490 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-0306-6729 |
| authorships[5].author.display_name | Patrick Delafontaine-Martel |
| authorships[5].countries | CA |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I45683168 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Electrical Engineering, Polytechnique Montréal, Montréal, Canada |
| authorships[5].institutions[0].id | https://openalex.org/I45683168 |
| authorships[5].institutions[0].ror | https://ror.org/05f8d4e86 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I45683168 |
| authorships[5].institutions[0].country_code | CA |
| authorships[5].institutions[0].display_name | Polytechnique Montréal |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Patrick Delafontaine-Martel |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Electrical Engineering, Polytechnique Montréal, Montréal, Canada |
| authorships[6].author.id | https://openalex.org/A5075040052 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-3699-1283 |
| authorships[6].author.display_name | Frédéric Lesage |
| authorships[6].countries | CA |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I2800290161 |
| authorships[6].affiliations[0].raw_affiliation_string | Montreal Heart Institute, Montréal, Canada |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I45683168 |
| authorships[6].affiliations[1].raw_affiliation_string | Department of Electrical Engineering, Polytechnique Montréal, Montréal, Canada |
| authorships[6].institutions[0].id | https://openalex.org/I2800290161 |
| authorships[6].institutions[0].ror | https://ror.org/03vs03g62 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I2800290161 |
| authorships[6].institutions[0].country_code | CA |
| authorships[6].institutions[0].display_name | Montreal Heart Institute |
| authorships[6].institutions[1].id | https://openalex.org/I45683168 |
| authorships[6].institutions[1].ror | https://ror.org/05f8d4e86 |
| authorships[6].institutions[1].type | education |
| authorships[6].institutions[1].lineage | https://openalex.org/I45683168 |
| authorships[6].institutions[1].country_code | CA |
| authorships[6].institutions[1].display_name | Polytechnique Montréal |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Frederic Lesage |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Electrical Engineering, Polytechnique Montréal, Montréal, Canada, Montreal Heart Institute, Montréal, Canada |
| authorships[7].author.id | https://openalex.org/A5011602062 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-6982-062X |
| authorships[7].author.display_name | Maxime Gasse |
| authorships[7].countries | CA |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I45683168 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Mathematics and Engineering, Polytechnique Montréal, Montréal, Canada |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I4210164802 |
| authorships[7].affiliations[1].raw_affiliation_string | Mila, Montréal, Canada |
| authorships[7].institutions[0].id | https://openalex.org/I4210164802 |
| authorships[7].institutions[0].ror | https://ror.org/05c22rx21 |
| authorships[7].institutions[0].type | facility |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210164802 |
| authorships[7].institutions[0].country_code | CA |
| authorships[7].institutions[0].display_name | Mila - Quebec Artificial Intelligence Institute |
| authorships[7].institutions[1].id | https://openalex.org/I45683168 |
| authorships[7].institutions[1].ror | https://ror.org/05f8d4e86 |
| authorships[7].institutions[1].type | education |
| authorships[7].institutions[1].lineage | https://openalex.org/I45683168 |
| authorships[7].institutions[1].country_code | CA |
| authorships[7].institutions[1].display_name | Polytechnique Montréal |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Maxime Gasse |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Mathematics and Engineering, Polytechnique Montréal, Montréal, Canada, Mila, Montréal, Canada |
| authorships[8].author.id | https://openalex.org/A5063219198 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-2057-2199 |
| authorships[8].author.display_name | Jean Provost |
| authorships[8].countries | CA |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I2800290161 |
| authorships[8].affiliations[0].raw_affiliation_string | Montreal Heart Institute, Montréal, Canada |
| authorships[8].affiliations[1].institution_ids | https://openalex.org/I45683168 |
| authorships[8].affiliations[1].raw_affiliation_string | Department of Engineering Physics, Polytechnique Montréal, Montréal, Canada |
| authorships[8].institutions[0].id | https://openalex.org/I2800290161 |
| authorships[8].institutions[0].ror | https://ror.org/03vs03g62 |
| authorships[8].institutions[0].type | healthcare |
| authorships[8].institutions[0].lineage | https://openalex.org/I2800290161 |
| authorships[8].institutions[0].country_code | CA |
| authorships[8].institutions[0].display_name | Montreal Heart Institute |
| authorships[8].institutions[1].id | https://openalex.org/I45683168 |
| authorships[8].institutions[1].ror | https://ror.org/05f8d4e86 |
| authorships[8].institutions[1].type | education |
| authorships[8].institutions[1].lineage | https://openalex.org/I45683168 |
| authorships[8].institutions[1].country_code | CA |
| authorships[8].institutions[1].display_name | Polytechnique Montréal |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Jean Provost |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Engineering Physics, Polytechnique Montréal, Montréal, Canada, Montreal Heart Institute, Montréal, Canada |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2310.08143 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Deep Learning Framework for Spatiotemporal Ultrasound Localization Microscopy |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12015 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Photoacoustic and Ultrasonic Imaging |
| related_works | https://openalex.org/W2805047570, https://openalex.org/W2143941942, https://openalex.org/W1999683198, https://openalex.org/W2036898521, https://openalex.org/W2003289253, https://openalex.org/W2019790121, https://openalex.org/W2136828611, https://openalex.org/W2000187939, https://openalex.org/W2722707899, https://openalex.org/W2038971354 |
| cited_by_count | 89 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 18 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 24 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 17 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 21 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 9 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:arXiv.org:2310.08143 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2310.08143 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2310.08143 |
| primary_location.id | doi:10.1109/tmi.2021.3056951 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S58069681 |
| primary_location.source.issn | 0278-0062, 1558-254X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0278-0062 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEEE Transactions on Medical Imaging |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Transactions on Medical Imaging |
| primary_location.landing_page_url | https://doi.org/10.1109/tmi.2021.3056951 |
| publication_date | 2021-02-03 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2243189799, https://openalex.org/W2259583284, https://openalex.org/W2559597482, https://openalex.org/W2892912782, https://openalex.org/W2903564834, https://openalex.org/W2963351448, https://openalex.org/W2884663733, https://openalex.org/W2529339498, https://openalex.org/W2943437051, https://openalex.org/W3089456286, https://openalex.org/W3014929655, https://openalex.org/W2338093112, https://openalex.org/W2772101345, https://openalex.org/W2995912299, https://openalex.org/W2995808778, https://openalex.org/W3104536065, https://openalex.org/W2936120730, https://openalex.org/W2999238294, https://openalex.org/W3015438922, https://openalex.org/W3104516790, https://openalex.org/W3016398700, https://openalex.org/W6631190155, https://openalex.org/W2006654193, https://openalex.org/W6738884980, https://openalex.org/W2174473997, https://openalex.org/W2167120328, https://openalex.org/W2734349601, https://openalex.org/W1964916631, https://openalex.org/W2963934212, https://openalex.org/W3000957625, https://openalex.org/W1973042235, https://openalex.org/W2890341512, https://openalex.org/W2068166000, https://openalex.org/W2557227117, https://openalex.org/W2010807412, https://openalex.org/W6747941575, https://openalex.org/W2793842820, https://openalex.org/W2070712157, https://openalex.org/W2945446161, https://openalex.org/W2476548250, https://openalex.org/W2576591156, https://openalex.org/W2962914239, https://openalex.org/W2809598685, https://openalex.org/W2535388113, https://openalex.org/W3010919001, https://openalex.org/W1522734439, https://openalex.org/W1522301498, https://openalex.org/W2884561390, https://openalex.org/W2784195389, https://openalex.org/W2964121744, https://openalex.org/W2963648314, https://openalex.org/W2116409241, https://openalex.org/W2962913459 |
| referenced_works_count | 53 |
| abstract_inverted_index.A | 116 |
| abstract_inverted_index.a | 11, 56, 100, 130, 138, 175, 184, 199, 226 |
| abstract_inverted_index.m | 217 |
| abstract_inverted_index.10 | 215 |
| abstract_inverted_index.3D | 162 |
| abstract_inverted_index.In | 187, 204 |
| abstract_inverted_index.To | 14, 47 |
| abstract_inverted_index.an | 219 |
| abstract_inverted_index.as | 156, 212, 214 |
| abstract_inverted_index.be | 66 |
| abstract_inverted_index.by | 98 |
| abstract_inverted_index.in | 172, 181, 183, 221 |
| abstract_inverted_index.of | 43, 45, 52, 59, 177 |
| abstract_inverted_index.on | 137 |
| abstract_inverted_index.to | 10, 36, 70, 81, 104, 128, 159, 164 |
| abstract_inverted_index.μ | 216 |
| abstract_inverted_index.CNN | 163, 190, 207 |
| abstract_inverted_index.The | 167 |
| abstract_inverted_index.ULM | 201 |
| abstract_inverted_index.and | 32, 54, 154, 180 |
| abstract_inverted_index.are | 28, 78 |
| abstract_inverted_index.bed | 8 |
| abstract_inverted_index.can | 4 |
| abstract_inverted_index.few | 12 |
| abstract_inverted_index.low | 62 |
| abstract_inverted_index.rat | 185 |
| abstract_inverted_index.the | 6, 23, 49, 60, 149, 161, 178, 189, 206 |
| abstract_inverted_index.was | 126, 170 |
| abstract_inverted_index.Deep | 101 |
| abstract_inverted_index.This | 93 |
| abstract_inverted_index.data | 142, 179 |
| abstract_inverted_index.deal | 82 |
| abstract_inverted_index.down | 9 |
| abstract_inverted_index.from | 85, 109, 123, 144 |
| abstract_inverted_index.high | 113 |
| abstract_inverted_index.must | 21, 65 |
| abstract_inverted_index.over | 34, 41 |
| abstract_inverted_index.sets | 143 |
| abstract_inverted_index.such | 16 |
| abstract_inverted_index.than | 198 |
| abstract_inverted_index.then | 29 |
| abstract_inverted_index.this | 96 |
| abstract_inverted_index.time | 35 |
| abstract_inverted_index.used | 127, 155 |
| abstract_inverted_index.vivo | 182 |
| abstract_inverted_index.were | 152 |
| abstract_inverted_index.when | 223 |
| abstract_inverted_index.with | 83, 112, 194, 218 |
| abstract_inverted_index.work | 94 |
| abstract_inverted_index.(81%) | 197 |
| abstract_inverted_index.(CNN) | 135 |
| abstract_inverted_index.(ULM) | 3 |
| abstract_inverted_index.V-net | 139 |
| abstract_inverted_index.based | 136 |
| abstract_inverted_index.brain | 119 |
| abstract_inverted_index.could | 208 |
| abstract_inverted_index.dense | 57, 106 |
| abstract_inverted_index.leads | 69 |
| abstract_inverted_index.limit | 51 |
| abstract_inverted_index.micro | 210 |
| abstract_inverted_index.mouse | 118 |
| abstract_inverted_index.small | 213 |
| abstract_inverted_index.track | 165 |
| abstract_inverted_index.train | 129, 160 |
| abstract_inverted_index.truth | 158 |
| abstract_inverted_index.used, | 67 |
| abstract_inverted_index.using | 174 |
| abstract_inverted_index.vivo, | 205 |
| abstract_inverted_index.which | 68 |
| abstract_inverted_index.(70%). | 203 |
| abstract_inverted_index.3D-CNN | 168 |
| abstract_inverted_index.agents | 20 |
| abstract_inverted_index.brain. | 186 |
| abstract_inverted_index.entire | 24 |
| abstract_inverted_index.ground | 157 |
| abstract_inverted_index.higher | 195 |
| abstract_inverted_index.nearby | 87 |
| abstract_inverted_index.neural | 133 |
| abstract_inverted_index.sample | 37 |
| abstract_inverted_index.silico | 173 |
| abstract_inverted_index.subset | 176 |
| abstract_inverted_index.unable | 80 |
| abstract_inverted_index.achieve | 15, 55 |
| abstract_inverted_index.against | 225 |
| abstract_inverted_index.flowing | 147 |
| abstract_inverted_index.further | 89 |
| abstract_inverted_index.images. | 46 |
| abstract_inverted_index.lasting | 72 |
| abstract_inverted_index.located | 30 |
| abstract_inverted_index.network | 134, 151 |
| abstract_inverted_index.perfuse | 22 |
| abstract_inverted_index.problem | 97 |
| abstract_inverted_index.recover | 105 |
| abstract_inverted_index.resolve | 5, 209 |
| abstract_inverted_index.several | 73 |
| abstract_inverted_index.silico, | 188 |
| abstract_inverted_index.through | 148 |
| abstract_inverted_index.tracked | 33 |
| abstract_inverted_index.vessels | 211 |
| abstract_inverted_index.2-photon | 124 |
| abstract_inverted_index.Learning | 102 |
| abstract_inverted_index.approach | 103, 169 |
| abstract_inverted_index.compared | 224 |
| abstract_inverted_index.contrast | 19 |
| abstract_inverted_index.hundreds | 42 |
| abstract_inverted_index.minutes. | 74 |
| abstract_inverted_index.multiple | 86, 145 |
| abstract_inverted_index.network, | 61, 121 |
| abstract_inverted_index.network. | 26 |
| abstract_inverted_index.networks | 108, 193 |
| abstract_inverted_index.overcome | 48 |
| abstract_inverted_index.reducing | 90 |
| abstract_inverted_index.vascular | 107, 192 |
| abstract_inverted_index.vessels, | 39 |
| abstract_inverted_index.approach. | 228 |
| abstract_inverted_index.currently | 79 |
| abstract_inverted_index.framework | 202 |
| abstract_inverted_index.overcomes | 95 |
| abstract_inverted_index.pipelines | 77 |
| abstract_inverted_index.precision | 196 |
| abstract_inverted_index.proposing | 99 |
| abstract_inverted_index.realistic | 117 |
| abstract_inverted_index.segmented | 122 |
| abstract_inverted_index.simulated | 153 |
| abstract_inverted_index.thousands | 44 |
| abstract_inverted_index.typically | 40 |
| abstract_inverted_index.validated | 171 |
| abstract_inverted_index.Microscopy | 2 |
| abstract_inverted_index.Ultrasound | 0, 141 |
| abstract_inverted_index.achievable | 91 |
| abstract_inverted_index.individual | 38 |
| abstract_inverted_index.processing | 76 |
| abstract_inverted_index.resolution | 222 |
| abstract_inverted_index.ultrasound | 110 |
| abstract_inverted_index.diffraction | 53 |
| abstract_inverted_index.fundamental | 50 |
| abstract_inverted_index.improvement | 220 |
| abstract_inverted_index.microbubble | 18, 63, 114 |
| abstract_inverted_index.microscopy, | 125 |
| abstract_inverted_index.Conventional | 75 |
| abstract_inverted_index.Localization | 1 |
| abstract_inverted_index.Microbubbles | 27 |
| abstract_inverted_index.acquisitions | 71, 111 |
| abstract_inverted_index.conventional | 200, 227 |
| abstract_inverted_index.individually | 31 |
| abstract_inverted_index.interference | 84 |
| abstract_inverted_index.microbubbles | 146 |
| abstract_inverted_index.micrometers. | 13 |
| abstract_inverted_index.performance, | 17 |
| abstract_inverted_index.architecture. | 140 |
| abstract_inverted_index.convolutional | 132 |
| abstract_inverted_index.microbubbles, | 88 |
| abstract_inverted_index.microbubbles. | 166 |
| abstract_inverted_index.microvascular | 7, 25, 120, 150 |
| abstract_inverted_index.reconstructed | 191 |
| abstract_inverted_index.concentrations | 64 |
| abstract_inverted_index.reconstruction | 58 |
| abstract_inverted_index.concentrations. | 92, 115 |
| abstract_inverted_index.three-dimensional | 131 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile.value | 0.97396189 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |