A deep neural network approach for parameterized PDEs and Bayesian inverse problems Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1088/2632-2153/ace67c
We consider the simulation of Bayesian statistical inverse problems governed by large-scale linear and nonlinear partial differential equations (PDEs). Markov chain Monte Carlo (MCMC) algorithms are standard techniques to solve such problems. However, MCMC techniques are computationally challenging as they require a prohibitive number of forward PDE solves. The goal of this paper is to introduce a fractional deep neural network (fDNN) based approach for the forward solves within an MCMC routine. Moreover, we discuss some approximation error estimates. We illustrate the efficiency of fDNN on inverse problems governed by nonlinear elliptic PDEs and the unsteady Navier–Stokes equations. In the former case, two examples are discussed, respectively depending on two and 100 parameters, with significant observed savings. The unsteady Navier–Stokes example illustrates that fDNN can outperform existing DNNs, doing a better job of capturing essential features such as vortex shedding.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1088/2632-2153/ace67c
- https://iopscience.iop.org/article/10.1088/2632-2153/ace67c/pdf
- OA Status
- gold
- Cited By
- 4
- References
- 66
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4383894183
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4383894183Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/2632-2153/ace67cDigital Object Identifier
- Title
-
A deep neural network approach for parameterized PDEs and Bayesian inverse problemsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-07-11Full publication date if available
- Authors
-
Harbir Antil, Howard C. Elman, Akwum Onwunta, Deepanshu VermaList of authors in order
- Landing page
-
https://doi.org/10.1088/2632-2153/ace67cPublisher landing page
- PDF URL
-
https://iopscience.iop.org/article/10.1088/2632-2153/ace67c/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://iopscience.iop.org/article/10.1088/2632-2153/ace67c/pdfDirect OA link when available
- Concepts
-
Markov chain Monte Carlo, Parameterized complexity, Nonlinear system, Inverse problem, Partial differential equation, Computer science, Applied mathematics, Artificial neural network, Mathematical optimization, Bayesian probability, Markov chain, Variable-order Bayesian network, Algorithm, Inverse, Mathematics, Artificial intelligence, Bayesian inference, Machine learning, Mathematical analysis, Quantum mechanics, Physics, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 4Per-year citation counts (last 5 years)
- References (count)
-
66Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4383894183 |
|---|---|
| doi | https://doi.org/10.1088/2632-2153/ace67c |
| ids.doi | https://doi.org/10.1088/2632-2153/ace67c |
| ids.openalex | https://openalex.org/W4383894183 |
| fwci | 0.8627007 |
| type | article |
| title | A deep neural network approach for parameterized PDEs and Bayesian inverse problems |
| awards[0].id | https://openalex.org/G3125033874 |
| awards[0].funder_id | https://openalex.org/F4320306076 |
| awards[0].display_name | |
| awards[0].funder_award_id | DMS-1818772 |
| awards[0].funder_display_name | National Science Foundation |
| biblio.issue | 3 |
| biblio.volume | 4 |
| biblio.last_page | 035015 |
| biblio.first_page | 035015 |
| topics[0].id | https://openalex.org/T11206 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3109 |
| topics[0].subfield.display_name | Statistical and Nonlinear Physics |
| topics[0].display_name | Model Reduction and Neural Networks |
| topics[1].id | https://openalex.org/T10928 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.9991000294685364 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1804 |
| topics[1].subfield.display_name | Statistics, Probability and Uncertainty |
| topics[1].display_name | Probabilistic and Robust Engineering Design |
| topics[2].id | https://openalex.org/T12814 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9901000261306763 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Gaussian Processes and Bayesian Inference |
| funders[0].id | https://openalex.org/F4320306076 |
| funders[0].ror | https://ror.org/021nxhr62 |
| funders[0].display_name | National Science Foundation |
| is_xpac | False |
| apc_list.value | 1600 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1962 |
| apc_paid.value | 1600 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1962 |
| concepts[0].id | https://openalex.org/C111350023 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8068300485610962 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1191869 |
| concepts[0].display_name | Markov chain Monte Carlo |
| concepts[1].id | https://openalex.org/C165464430 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6881459951400757 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1570441 |
| concepts[1].display_name | Parameterized complexity |
| concepts[2].id | https://openalex.org/C158622935 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6384868621826172 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q660848 |
| concepts[2].display_name | Nonlinear system |
| concepts[3].id | https://openalex.org/C135252773 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5795881748199463 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1567213 |
| concepts[3].display_name | Inverse problem |
| concepts[4].id | https://openalex.org/C93779851 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5624025464057922 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q271977 |
| concepts[4].display_name | Partial differential equation |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5616311430931091 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C28826006 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5484696626663208 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[6].display_name | Applied mathematics |
| concepts[7].id | https://openalex.org/C50644808 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5402595400810242 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[7].display_name | Artificial neural network |
| concepts[8].id | https://openalex.org/C126255220 |
| concepts[8].level | 1 |
| concepts[8].score | 0.5099889039993286 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[8].display_name | Mathematical optimization |
| concepts[9].id | https://openalex.org/C107673813 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5095162987709045 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[9].display_name | Bayesian probability |
| concepts[10].id | https://openalex.org/C98763669 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4701766073703766 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q176645 |
| concepts[10].display_name | Markov chain |
| concepts[11].id | https://openalex.org/C71983512 |
| concepts[11].level | 4 |
| concepts[11].score | 0.4321586489677429 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7915687 |
| concepts[11].display_name | Variable-order Bayesian network |
| concepts[12].id | https://openalex.org/C11413529 |
| concepts[12].level | 1 |
| concepts[12].score | 0.42370277643203735 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[12].display_name | Algorithm |
| concepts[13].id | https://openalex.org/C207467116 |
| concepts[13].level | 2 |
| concepts[13].score | 0.41463518142700195 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q4385666 |
| concepts[13].display_name | Inverse |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.3481560945510864 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C154945302 |
| concepts[15].level | 1 |
| concepts[15].score | 0.2570841908454895 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[15].display_name | Artificial intelligence |
| concepts[16].id | https://openalex.org/C160234255 |
| concepts[16].level | 3 |
| concepts[16].score | 0.25656232237815857 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q812535 |
| concepts[16].display_name | Bayesian inference |
| concepts[17].id | https://openalex.org/C119857082 |
| concepts[17].level | 1 |
| concepts[17].score | 0.2019166350364685 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[17].display_name | Machine learning |
| concepts[18].id | https://openalex.org/C134306372 |
| concepts[18].level | 1 |
| concepts[18].score | 0.09577915072441101 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[18].display_name | Mathematical analysis |
| concepts[19].id | https://openalex.org/C62520636 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[19].display_name | Quantum mechanics |
| concepts[20].id | https://openalex.org/C121332964 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[20].display_name | Physics |
| concepts[21].id | https://openalex.org/C2524010 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[21].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/markov-chain-monte-carlo |
| keywords[0].score | 0.8068300485610962 |
| keywords[0].display_name | Markov chain Monte Carlo |
| keywords[1].id | https://openalex.org/keywords/parameterized-complexity |
| keywords[1].score | 0.6881459951400757 |
| keywords[1].display_name | Parameterized complexity |
| keywords[2].id | https://openalex.org/keywords/nonlinear-system |
| keywords[2].score | 0.6384868621826172 |
| keywords[2].display_name | Nonlinear system |
| keywords[3].id | https://openalex.org/keywords/inverse-problem |
| keywords[3].score | 0.5795881748199463 |
| keywords[3].display_name | Inverse problem |
| keywords[4].id | https://openalex.org/keywords/partial-differential-equation |
| keywords[4].score | 0.5624025464057922 |
| keywords[4].display_name | Partial differential equation |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.5616311430931091 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/applied-mathematics |
| keywords[6].score | 0.5484696626663208 |
| keywords[6].display_name | Applied mathematics |
| keywords[7].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[7].score | 0.5402595400810242 |
| keywords[7].display_name | Artificial neural network |
| keywords[8].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[8].score | 0.5099889039993286 |
| keywords[8].display_name | Mathematical optimization |
| keywords[9].id | https://openalex.org/keywords/bayesian-probability |
| keywords[9].score | 0.5095162987709045 |
| keywords[9].display_name | Bayesian probability |
| keywords[10].id | https://openalex.org/keywords/markov-chain |
| keywords[10].score | 0.4701766073703766 |
| keywords[10].display_name | Markov chain |
| keywords[11].id | https://openalex.org/keywords/variable-order-bayesian-network |
| keywords[11].score | 0.4321586489677429 |
| keywords[11].display_name | Variable-order Bayesian network |
| keywords[12].id | https://openalex.org/keywords/algorithm |
| keywords[12].score | 0.42370277643203735 |
| keywords[12].display_name | Algorithm |
| keywords[13].id | https://openalex.org/keywords/inverse |
| keywords[13].score | 0.41463518142700195 |
| keywords[13].display_name | Inverse |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.3481560945510864 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[15].score | 0.2570841908454895 |
| keywords[15].display_name | Artificial intelligence |
| keywords[16].id | https://openalex.org/keywords/bayesian-inference |
| keywords[16].score | 0.25656232237815857 |
| keywords[16].display_name | Bayesian inference |
| keywords[17].id | https://openalex.org/keywords/machine-learning |
| keywords[17].score | 0.2019166350364685 |
| keywords[17].display_name | Machine learning |
| keywords[18].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[18].score | 0.09577915072441101 |
| keywords[18].display_name | Mathematical analysis |
| language | en |
| locations[0].id | doi:10.1088/2632-2153/ace67c |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210200687 |
| locations[0].source.issn | 2632-2153 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2632-2153 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Machine Learning Science and Technology |
| locations[0].source.host_organization | https://openalex.org/P4310320083 |
| locations[0].source.host_organization_name | IOP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://iopscience.iop.org/article/10.1088/2632-2153/ace67c/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Machine Learning: Science and Technology |
| locations[0].landing_page_url | https://doi.org/10.1088/2632-2153/ace67c |
| locations[1].id | pmh:oai:doaj.org/article:bc972033eaa543b49ddde88f22266e17 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Machine Learning: Science and Technology, Vol 4, Iss 3, p 035015 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/bc972033eaa543b49ddde88f22266e17 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5021343350 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6641-1449 |
| authorships[0].author.display_name | Harbir Antil |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I162714631 |
| authorships[0].affiliations[0].raw_affiliation_string | Mathematics, George Mason University, 4400 University Blvd., Fairfax, Virginia, 22030-4444, UNITED STATES |
| authorships[0].institutions[0].id | https://openalex.org/I162714631 |
| authorships[0].institutions[0].ror | https://ror.org/02jqj7156 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I162714631 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | George Mason University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Harbir Antil |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Mathematics, George Mason University, 4400 University Blvd., Fairfax, Virginia, 22030-4444, UNITED STATES |
| authorships[1].author.id | https://openalex.org/A5086424147 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8886-9901 |
| authorships[1].author.display_name | Howard C. Elman |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I66946132 |
| authorships[1].affiliations[0].raw_affiliation_string | , University of Maryland at College Park, Computer Science and Institute for Advanced Computer Studies, College Park, Maryland, 20742-5031, UNITED STATES |
| authorships[1].institutions[0].id | https://openalex.org/I66946132 |
| authorships[1].institutions[0].ror | https://ror.org/047s2c258 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I66946132 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Maryland, College Park |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Howard C Elman |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | , University of Maryland at College Park, Computer Science and Institute for Advanced Computer Studies, College Park, Maryland, 20742-5031, UNITED STATES |
| authorships[2].author.id | https://openalex.org/A5039702204 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2110-8881 |
| authorships[2].author.display_name | Akwum Onwunta |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I186143895 |
| authorships[2].affiliations[0].raw_affiliation_string | Industrial and Systems Engineering, Lehigh University, 200 W Packer Avenue, Bethlehem, Bethlehem, 18015-3027, UNITED STATES |
| authorships[2].institutions[0].id | https://openalex.org/I186143895 |
| authorships[2].institutions[0].ror | https://ror.org/012afjb06 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I186143895 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Lehigh University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Akwum Onwunta |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Industrial and Systems Engineering, Lehigh University, 200 W Packer Avenue, Bethlehem, Bethlehem, 18015-3027, UNITED STATES |
| authorships[3].author.id | https://openalex.org/A5055719783 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9125-2200 |
| authorships[3].author.display_name | Deepanshu Verma |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I150468666 |
| authorships[3].affiliations[0].raw_affiliation_string | Emory University, Department of Mathematics, Atlanta, Georgia, 30322-1007, UNITED STATES |
| authorships[3].institutions[0].id | https://openalex.org/I150468666 |
| authorships[3].institutions[0].ror | https://ror.org/03czfpz43 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I150468666 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Emory University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Deepanshu Verma |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Emory University, Department of Mathematics, Atlanta, Georgia, 30322-1007, UNITED STATES |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://iopscience.iop.org/article/10.1088/2632-2153/ace67c/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A deep neural network approach for parameterized PDEs and Bayesian inverse problems |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11206 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3109 |
| primary_topic.subfield.display_name | Statistical and Nonlinear Physics |
| primary_topic.display_name | Model Reduction and Neural Networks |
| related_works | https://openalex.org/W2131494030, https://openalex.org/W4246457929, https://openalex.org/W2065296437, https://openalex.org/W2294136611, https://openalex.org/W4309467426, https://openalex.org/W4283077537, https://openalex.org/W2464065341, https://openalex.org/W3094914793, https://openalex.org/W1582801283, https://openalex.org/W2968673439 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 4 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1088/2632-2153/ace67c |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210200687 |
| best_oa_location.source.issn | 2632-2153 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2632-2153 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Machine Learning Science and Technology |
| best_oa_location.source.host_organization | https://openalex.org/P4310320083 |
| best_oa_location.source.host_organization_name | IOP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://iopscience.iop.org/article/10.1088/2632-2153/ace67c/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Machine Learning: Science and Technology |
| best_oa_location.landing_page_url | https://doi.org/10.1088/2632-2153/ace67c |
| primary_location.id | doi:10.1088/2632-2153/ace67c |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210200687 |
| primary_location.source.issn | 2632-2153 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2632-2153 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Machine Learning Science and Technology |
| primary_location.source.host_organization | https://openalex.org/P4310320083 |
| primary_location.source.host_organization_name | IOP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://iopscience.iop.org/article/10.1088/2632-2153/ace67c/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Machine Learning: Science and Technology |
| primary_location.landing_page_url | https://doi.org/10.1088/2632-2153/ace67c |
| publication_date | 2023-07-11 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W6607639777, https://openalex.org/W6756042144, https://openalex.org/W2050841740, https://openalex.org/W2047591100, https://openalex.org/W2990121169, https://openalex.org/W2462335633, https://openalex.org/W4281627930, https://openalex.org/W3217577718, https://openalex.org/W2015356769, https://openalex.org/W6662930617, https://openalex.org/W2049753327, https://openalex.org/W2993158195, https://openalex.org/W4288039037, https://openalex.org/W2004026774, https://openalex.org/W2126001294, https://openalex.org/W1881337285, https://openalex.org/W2397849264, https://openalex.org/W6768353417, https://openalex.org/W2074836377, https://openalex.org/W6704094637, https://openalex.org/W3111914315, https://openalex.org/W2168970443, https://openalex.org/W2965793234, https://openalex.org/W3004424267, https://openalex.org/W1995780830, https://openalex.org/W2612252966, https://openalex.org/W2803629276, https://openalex.org/W2856628251, https://openalex.org/W6687483927, https://openalex.org/W2766298346, https://openalex.org/W2058538513, https://openalex.org/W6725739302, https://openalex.org/W2119471187, https://openalex.org/W3125537303, https://openalex.org/W2072475940, https://openalex.org/W6784227514, https://openalex.org/W2082261407, https://openalex.org/W3176116059, https://openalex.org/W2969381807, https://openalex.org/W2899283552, https://openalex.org/W4221147887, https://openalex.org/W3027734040, https://openalex.org/W6634725984, https://openalex.org/W2786232134, https://openalex.org/W1966619711, https://openalex.org/W6729059855, https://openalex.org/W2119179880, https://openalex.org/W3103198077, https://openalex.org/W3010849941, https://openalex.org/W2528305538, https://openalex.org/W2784733489, https://openalex.org/W6764825121, https://openalex.org/W3099057226, https://openalex.org/W4288245511, https://openalex.org/W3098146548, https://openalex.org/W2541674938, https://openalex.org/W2339820292, https://openalex.org/W2963446712, https://openalex.org/W2194775991, https://openalex.org/W3092923133, https://openalex.org/W2897382759, https://openalex.org/W4317434745, https://openalex.org/W187080294, https://openalex.org/W2954769868, https://openalex.org/W1579788182, https://openalex.org/W3098011980 |
| referenced_works_count | 66 |
| abstract_inverted_index.a | 42, 57, 130 |
| abstract_inverted_index.In | 99 |
| abstract_inverted_index.We | 1, 80 |
| abstract_inverted_index.an | 70 |
| abstract_inverted_index.as | 39, 138 |
| abstract_inverted_index.by | 11, 90 |
| abstract_inverted_index.is | 54 |
| abstract_inverted_index.of | 5, 45, 51, 84, 133 |
| abstract_inverted_index.on | 86, 109 |
| abstract_inverted_index.to | 29, 55 |
| abstract_inverted_index.we | 74 |
| abstract_inverted_index.100 | 112 |
| abstract_inverted_index.PDE | 47 |
| abstract_inverted_index.The | 49, 118 |
| abstract_inverted_index.and | 14, 94, 111 |
| abstract_inverted_index.are | 26, 36, 105 |
| abstract_inverted_index.can | 125 |
| abstract_inverted_index.for | 65 |
| abstract_inverted_index.job | 132 |
| abstract_inverted_index.the | 3, 66, 82, 95, 100 |
| abstract_inverted_index.two | 103, 110 |
| abstract_inverted_index.MCMC | 34, 71 |
| abstract_inverted_index.PDEs | 93 |
| abstract_inverted_index.deep | 59 |
| abstract_inverted_index.fDNN | 85, 124 |
| abstract_inverted_index.goal | 50 |
| abstract_inverted_index.some | 76 |
| abstract_inverted_index.such | 31, 137 |
| abstract_inverted_index.that | 123 |
| abstract_inverted_index.they | 40 |
| abstract_inverted_index.this | 52 |
| abstract_inverted_index.with | 114 |
| abstract_inverted_index.Carlo | 23 |
| abstract_inverted_index.DNNs, | 128 |
| abstract_inverted_index.Monte | 22 |
| abstract_inverted_index.based | 63 |
| abstract_inverted_index.case, | 102 |
| abstract_inverted_index.chain | 21 |
| abstract_inverted_index.doing | 129 |
| abstract_inverted_index.error | 78 |
| abstract_inverted_index.paper | 53 |
| abstract_inverted_index.solve | 30 |
| abstract_inverted_index.(MCMC) | 24 |
| abstract_inverted_index.(fDNN) | 62 |
| abstract_inverted_index.Markov | 20 |
| abstract_inverted_index.better | 131 |
| abstract_inverted_index.former | 101 |
| abstract_inverted_index.linear | 13 |
| abstract_inverted_index.neural | 60 |
| abstract_inverted_index.number | 44 |
| abstract_inverted_index.solves | 68 |
| abstract_inverted_index.vortex | 139 |
| abstract_inverted_index.within | 69 |
| abstract_inverted_index.(PDEs). | 19 |
| abstract_inverted_index.discuss | 75 |
| abstract_inverted_index.example | 121 |
| abstract_inverted_index.forward | 46, 67 |
| abstract_inverted_index.inverse | 8, 87 |
| abstract_inverted_index.network | 61 |
| abstract_inverted_index.partial | 16 |
| abstract_inverted_index.require | 41 |
| abstract_inverted_index.solves. | 48 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Bayesian | 6 |
| abstract_inverted_index.However, | 33 |
| abstract_inverted_index.approach | 64 |
| abstract_inverted_index.consider | 2 |
| abstract_inverted_index.elliptic | 92 |
| abstract_inverted_index.examples | 104 |
| abstract_inverted_index.existing | 127 |
| abstract_inverted_index.features | 136 |
| abstract_inverted_index.governed | 10, 89 |
| abstract_inverted_index.observed | 116 |
| abstract_inverted_index.problems | 9, 88 |
| abstract_inverted_index.routine. | 72 |
| abstract_inverted_index.savings. | 117 |
| abstract_inverted_index.standard | 27 |
| abstract_inverted_index.unsteady | 96, 119 |
| abstract_inverted_index.Moreover, | 73 |
| abstract_inverted_index.capturing | 134 |
| abstract_inverted_index.depending | 108 |
| abstract_inverted_index.equations | 18 |
| abstract_inverted_index.essential | 135 |
| abstract_inverted_index.introduce | 56 |
| abstract_inverted_index.nonlinear | 15, 91 |
| abstract_inverted_index.problems. | 32 |
| abstract_inverted_index.shedding. | 140 |
| abstract_inverted_index.algorithms | 25 |
| abstract_inverted_index.discussed, | 106 |
| abstract_inverted_index.efficiency | 83 |
| abstract_inverted_index.equations. | 98 |
| abstract_inverted_index.estimates. | 79 |
| abstract_inverted_index.fractional | 58 |
| abstract_inverted_index.illustrate | 81 |
| abstract_inverted_index.outperform | 126 |
| abstract_inverted_index.simulation | 4 |
| abstract_inverted_index.techniques | 28, 35 |
| abstract_inverted_index.challenging | 38 |
| abstract_inverted_index.illustrates | 122 |
| abstract_inverted_index.large-scale | 12 |
| abstract_inverted_index.parameters, | 113 |
| abstract_inverted_index.prohibitive | 43 |
| abstract_inverted_index.significant | 115 |
| abstract_inverted_index.statistical | 7 |
| abstract_inverted_index.differential | 17 |
| abstract_inverted_index.respectively | 107 |
| abstract_inverted_index.approximation | 77 |
| abstract_inverted_index.Navier–Stokes | 97, 120 |
| abstract_inverted_index.computationally | 37 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5039702204 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I186143895 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/8 |
| sustainable_development_goals[0].score | 0.5699999928474426 |
| sustainable_development_goals[0].display_name | Decent work and economic growth |
| citation_normalized_percentile.value | 0.71125 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |