A Deep Neural Network Codebook Approach for Near-Field Nulling Control Beam Focusing Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2509.22204
This paper proposes a deep neural network (DNN) codebook approach for multi-user interference (MUI) mitigation in extremely large multiple-input multiple-output (XL-MIMO) systems operating in the near-field region. Unlike existing DNN-based nulling control beamforming (NCBF) methods that face scalability and complexity challenges, the proposed framework partitions the Fresnel region using correlation-based sampling and assigns a lightweight fully connected DNN model to each subsection. Each model is trained on beamforming weights generated using the linearly constrained minimum variance (LCMV) method, enabling accurate prediction of nulling control beam-focusing weights that simultaneously optimize the desired signal strength and suppress potential interference for both collinear and non-collinear user configurations. Simulation results show that the trained models achieve average phase and magnitude prediction errors of 0.085 radians and 0.52 dB, respectively, across 75 sample subsections. Full-wave simulations in Ansys HFSS further demonstrate that the proposed DNN codebook achieves interference suppression better than 31.64 dB, with a performance gap within 2 dB of the LCMV method, thereby validating its effectiveness in mitigating MUI while reducing computational complexity.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2509.22204
- https://arxiv.org/pdf/2509.22204
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416830719
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416830719Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2509.22204Digital Object Identifier
- Title
-
A Deep Neural Network Codebook Approach for Near-Field Nulling Control Beam FocusingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-26Full publication date if available
- Authors
-
Mohammad Hossein Karimi, Yuanzhe Gong, Tho Le‐NgocList of authors in order
- Landing page
-
https://arxiv.org/abs/2509.22204Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2509.22204Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2509.22204Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416830719 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2509.22204 |
| ids.doi | https://doi.org/10.48550/arxiv.2509.22204 |
| ids.openalex | https://openalex.org/W4416830719 |
| fwci | |
| type | preprint |
| title | A Deep Neural Network Codebook Approach for Near-Field Nulling Control Beam Focusing |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2509.22204 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2509.22204 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2509.22204 |
| locations[1].id | doi:10.48550/arxiv.2509.22204 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2509.22204 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5074975866 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2435-6277 |
| authorships[0].author.display_name | Mohammad Hossein Karimi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Karimi, Mohammadhossein |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5071183699 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2583-9462 |
| authorships[1].author.display_name | Yuanzhe Gong |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gong, Yuanzhe |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5026464766 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9308-8894 |
| authorships[2].author.display_name | Tho Le‐Ngoc |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Le-Ngoc, Tho |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2509.22204 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Deep Neural Network Codebook Approach for Near-Field Nulling Control Beam Focusing |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-30T20:20:19.637925 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2509.22204 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2509.22204 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2509.22204 |
| primary_location.id | pmh:oai:arXiv.org:2509.22204 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2509.22204 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2509.22204 |
| publication_date | 2025-09-26 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.2 | 153 |
| abstract_inverted_index.a | 3, 53, 149 |
| abstract_inverted_index.75 | 126 |
| abstract_inverted_index.dB | 154 |
| abstract_inverted_index.in | 15, 23, 131, 163 |
| abstract_inverted_index.is | 64 |
| abstract_inverted_index.of | 81, 118, 155 |
| abstract_inverted_index.on | 66 |
| abstract_inverted_index.to | 59 |
| abstract_inverted_index.DNN | 57, 139 |
| abstract_inverted_index.MUI | 165 |
| abstract_inverted_index.and | 38, 51, 93, 100, 114, 121 |
| abstract_inverted_index.dB, | 123, 147 |
| abstract_inverted_index.for | 10, 97 |
| abstract_inverted_index.gap | 151 |
| abstract_inverted_index.its | 161 |
| abstract_inverted_index.the | 24, 41, 45, 71, 89, 108, 137, 156 |
| abstract_inverted_index.0.52 | 122 |
| abstract_inverted_index.Each | 62 |
| abstract_inverted_index.HFSS | 133 |
| abstract_inverted_index.LCMV | 157 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.both | 98 |
| abstract_inverted_index.deep | 4 |
| abstract_inverted_index.each | 60 |
| abstract_inverted_index.face | 36 |
| abstract_inverted_index.show | 106 |
| abstract_inverted_index.than | 145 |
| abstract_inverted_index.that | 35, 86, 107, 136 |
| abstract_inverted_index.user | 102 |
| abstract_inverted_index.with | 148 |
| abstract_inverted_index.(DNN) | 7 |
| abstract_inverted_index.(MUI) | 13 |
| abstract_inverted_index.0.085 | 119 |
| abstract_inverted_index.31.64 | 146 |
| abstract_inverted_index.Ansys | 132 |
| abstract_inverted_index.fully | 55 |
| abstract_inverted_index.large | 17 |
| abstract_inverted_index.model | 58, 63 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.phase | 113 |
| abstract_inverted_index.using | 48, 70 |
| abstract_inverted_index.while | 166 |
| abstract_inverted_index.(LCMV) | 76 |
| abstract_inverted_index.(NCBF) | 33 |
| abstract_inverted_index.Unlike | 27 |
| abstract_inverted_index.across | 125 |
| abstract_inverted_index.better | 144 |
| abstract_inverted_index.errors | 117 |
| abstract_inverted_index.models | 110 |
| abstract_inverted_index.neural | 5 |
| abstract_inverted_index.region | 47 |
| abstract_inverted_index.sample | 127 |
| abstract_inverted_index.signal | 91 |
| abstract_inverted_index.within | 152 |
| abstract_inverted_index.Fresnel | 46 |
| abstract_inverted_index.achieve | 111 |
| abstract_inverted_index.assigns | 52 |
| abstract_inverted_index.average | 112 |
| abstract_inverted_index.control | 31, 83 |
| abstract_inverted_index.desired | 90 |
| abstract_inverted_index.further | 134 |
| abstract_inverted_index.method, | 77, 158 |
| abstract_inverted_index.methods | 34 |
| abstract_inverted_index.minimum | 74 |
| abstract_inverted_index.network | 6 |
| abstract_inverted_index.nulling | 30, 82 |
| abstract_inverted_index.radians | 120 |
| abstract_inverted_index.region. | 26 |
| abstract_inverted_index.results | 105 |
| abstract_inverted_index.systems | 21 |
| abstract_inverted_index.thereby | 159 |
| abstract_inverted_index.trained | 65, 109 |
| abstract_inverted_index.weights | 68, 85 |
| abstract_inverted_index.accurate | 79 |
| abstract_inverted_index.achieves | 141 |
| abstract_inverted_index.approach | 9 |
| abstract_inverted_index.codebook | 8, 140 |
| abstract_inverted_index.enabling | 78 |
| abstract_inverted_index.existing | 28 |
| abstract_inverted_index.linearly | 72 |
| abstract_inverted_index.optimize | 88 |
| abstract_inverted_index.proposed | 42, 138 |
| abstract_inverted_index.proposes | 2 |
| abstract_inverted_index.reducing | 167 |
| abstract_inverted_index.sampling | 50 |
| abstract_inverted_index.strength | 92 |
| abstract_inverted_index.suppress | 94 |
| abstract_inverted_index.variance | 75 |
| abstract_inverted_index.(XL-MIMO) | 20 |
| abstract_inverted_index.DNN-based | 29 |
| abstract_inverted_index.Full-wave | 129 |
| abstract_inverted_index.collinear | 99 |
| abstract_inverted_index.connected | 56 |
| abstract_inverted_index.extremely | 16 |
| abstract_inverted_index.framework | 43 |
| abstract_inverted_index.generated | 69 |
| abstract_inverted_index.magnitude | 115 |
| abstract_inverted_index.operating | 22 |
| abstract_inverted_index.potential | 95 |
| abstract_inverted_index.Simulation | 104 |
| abstract_inverted_index.complexity | 39 |
| abstract_inverted_index.mitigating | 164 |
| abstract_inverted_index.mitigation | 14 |
| abstract_inverted_index.multi-user | 11 |
| abstract_inverted_index.near-field | 25 |
| abstract_inverted_index.partitions | 44 |
| abstract_inverted_index.prediction | 80, 116 |
| abstract_inverted_index.validating | 160 |
| abstract_inverted_index.beamforming | 32, 67 |
| abstract_inverted_index.challenges, | 40 |
| abstract_inverted_index.complexity. | 169 |
| abstract_inverted_index.constrained | 73 |
| abstract_inverted_index.demonstrate | 135 |
| abstract_inverted_index.lightweight | 54 |
| abstract_inverted_index.performance | 150 |
| abstract_inverted_index.scalability | 37 |
| abstract_inverted_index.simulations | 130 |
| abstract_inverted_index.subsection. | 61 |
| abstract_inverted_index.suppression | 143 |
| abstract_inverted_index.interference | 12, 96, 142 |
| abstract_inverted_index.subsections. | 128 |
| abstract_inverted_index.beam-focusing | 84 |
| abstract_inverted_index.computational | 168 |
| abstract_inverted_index.effectiveness | 162 |
| abstract_inverted_index.non-collinear | 101 |
| abstract_inverted_index.respectively, | 124 |
| abstract_inverted_index.multiple-input | 18 |
| abstract_inverted_index.simultaneously | 87 |
| abstract_inverted_index.configurations. | 103 |
| abstract_inverted_index.multiple-output | 19 |
| abstract_inverted_index.correlation-based | 49 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |