A Deep Reinforcement Learning Approach for Autonomous Reconfigurable Intelligent Surfaces Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2403.09270
A reconfigurable intelligent surface (RIS) is a prospective wireless technology that enhances wireless channel quality. An RIS is often equipped with passive array of elements and provides cost and power-efficient solutions for coverage extension of wireless communication systems. Without any radio frequency (RF) chains or computing resources, however, the RIS requires control information to be sent to it from an external unit, e.g., a base station (BS). The control information can be delivered by wired or wireless channels, and the BS must be aware of the RIS and the RIS-related channel conditions in order to effectively configure its behavior. Recent works have introduced hybrid RIS structures possessing a few active elements that can sense and digitally process received data. Here, we propose the operation of an entirely autonomous RIS that operates without a control link between the RIS and BS. Using a few sensing elements, the autonomous RIS employs a deep Q network (DQN) based on reinforcement learning in order to enhance the sum rate of the network. Our results illustrate the potential of deploying autonomous RISs in wireless networks with essentially no network overhead.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2403.09270
- https://arxiv.org/pdf/2403.09270
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392873688
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392873688Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2403.09270Digital Object Identifier
- Title
-
A Deep Reinforcement Learning Approach for Autonomous Reconfigurable Intelligent SurfacesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-14Full publication date if available
- Authors
-
Hyuckjin Choi, Ly V. Nguyen, Junil Choi, A. Lee SwindlehurstList of authors in order
- Landing page
-
https://arxiv.org/abs/2403.09270Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2403.09270Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2403.09270Direct OA link when available
- Concepts
-
Reinforcement learning, Computer science, Artificial intelligence, Autonomous learning, Human–computer interaction, Psychology, Mathematics educationTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392873688 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2403.09270 |
| ids.doi | https://doi.org/10.48550/arxiv.2403.09270 |
| ids.openalex | https://openalex.org/W4392873688 |
| fwci | |
| type | preprint |
| title | A Deep Reinforcement Learning Approach for Autonomous Reconfigurable Intelligent Surfaces |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12784 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.890999972820282 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2210 |
| topics[0].subfield.display_name | Mechanical Engineering |
| topics[0].display_name | Modular Robots and Swarm Intelligence |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C97541855 |
| concepts[0].level | 2 |
| concepts[0].score | 0.797386109828949 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[0].display_name | Reinforcement learning |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5631921291351318 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5047100782394409 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2983271839 |
| concepts[3].level | 2 |
| concepts[3].score | 0.48890963196754456 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q29644074 |
| concepts[3].display_name | Autonomous learning |
| concepts[4].id | https://openalex.org/C107457646 |
| concepts[4].level | 1 |
| concepts[4].score | 0.38730669021606445 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[4].display_name | Human–computer interaction |
| concepts[5].id | https://openalex.org/C15744967 |
| concepts[5].level | 0 |
| concepts[5].score | 0.1455947756767273 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[5].display_name | Psychology |
| concepts[6].id | https://openalex.org/C145420912 |
| concepts[6].level | 1 |
| concepts[6].score | 0.10346511006355286 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q853077 |
| concepts[6].display_name | Mathematics education |
| keywords[0].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[0].score | 0.797386109828949 |
| keywords[0].display_name | Reinforcement learning |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5631921291351318 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5047100782394409 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/autonomous-learning |
| keywords[3].score | 0.48890963196754456 |
| keywords[3].display_name | Autonomous learning |
| keywords[4].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[4].score | 0.38730669021606445 |
| keywords[4].display_name | Human–computer interaction |
| keywords[5].id | https://openalex.org/keywords/psychology |
| keywords[5].score | 0.1455947756767273 |
| keywords[5].display_name | Psychology |
| keywords[6].id | https://openalex.org/keywords/mathematics-education |
| keywords[6].score | 0.10346511006355286 |
| keywords[6].display_name | Mathematics education |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2403.09270 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2403.09270 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2403.09270 |
| locations[1].id | doi:10.48550/arxiv.2403.09270 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2403.09270 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5006892394 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1134-2693 |
| authorships[0].author.display_name | Hyuckjin Choi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Choi, Hyuckjin |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5033062249 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2682-4118 |
| authorships[1].author.display_name | Ly V. Nguyen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Nguyen, Ly V. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5065248740 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9862-9020 |
| authorships[2].author.display_name | Junil Choi |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Choi, Junil |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5027055000 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0521-3107 |
| authorships[3].author.display_name | A. Lee Swindlehurst |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Swindlehurst, A. Lee |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2403.09270 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-03-16T00:00:00 |
| display_name | A Deep Reinforcement Learning Approach for Autonomous Reconfigurable Intelligent Surfaces |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12784 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.890999972820282 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2210 |
| primary_topic.subfield.display_name | Mechanical Engineering |
| primary_topic.display_name | Modular Robots and Swarm Intelligence |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4306904969, https://openalex.org/W2358668433, https://openalex.org/W2138720691, https://openalex.org/W2376932109, https://openalex.org/W4362501864, https://openalex.org/W2001405890, https://openalex.org/W4380318855, https://openalex.org/W2031695474 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2403.09270 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2403.09270 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2403.09270 |
| primary_location.id | pmh:oai:arXiv.org:2403.09270 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2403.09270 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2403.09270 |
| publication_date | 2024-03-14 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 0 |
| abstract_inverted_index.Q | 151 |
| abstract_inverted_index.a | 6, 63, 107, 132, 141, 149 |
| abstract_inverted_index.An | 15 |
| abstract_inverted_index.BS | 80 |
| abstract_inverted_index.an | 59, 125 |
| abstract_inverted_index.be | 54, 71, 82 |
| abstract_inverted_index.by | 73 |
| abstract_inverted_index.in | 92, 158, 177 |
| abstract_inverted_index.is | 5, 17 |
| abstract_inverted_index.it | 57 |
| abstract_inverted_index.no | 182 |
| abstract_inverted_index.of | 23, 34, 84, 124, 165, 173 |
| abstract_inverted_index.on | 155 |
| abstract_inverted_index.or | 44, 75 |
| abstract_inverted_index.to | 53, 56, 94, 160 |
| abstract_inverted_index.we | 120 |
| abstract_inverted_index.BS. | 139 |
| abstract_inverted_index.Our | 168 |
| abstract_inverted_index.RIS | 16, 49, 86, 104, 128, 137, 147 |
| abstract_inverted_index.The | 67 |
| abstract_inverted_index.and | 25, 28, 78, 87, 114, 138 |
| abstract_inverted_index.any | 39 |
| abstract_inverted_index.can | 70, 112 |
| abstract_inverted_index.few | 108, 142 |
| abstract_inverted_index.for | 31 |
| abstract_inverted_index.its | 97 |
| abstract_inverted_index.sum | 163 |
| abstract_inverted_index.the | 48, 79, 85, 88, 122, 136, 145, 162, 166, 171 |
| abstract_inverted_index.(RF) | 42 |
| abstract_inverted_index.RISs | 176 |
| abstract_inverted_index.base | 64 |
| abstract_inverted_index.cost | 27 |
| abstract_inverted_index.deep | 150 |
| abstract_inverted_index.from | 58 |
| abstract_inverted_index.have | 101 |
| abstract_inverted_index.link | 134 |
| abstract_inverted_index.must | 81 |
| abstract_inverted_index.rate | 164 |
| abstract_inverted_index.sent | 55 |
| abstract_inverted_index.that | 10, 111, 129 |
| abstract_inverted_index.with | 20, 180 |
| abstract_inverted_index.(BS). | 66 |
| abstract_inverted_index.(DQN) | 153 |
| abstract_inverted_index.(RIS) | 4 |
| abstract_inverted_index.Here, | 119 |
| abstract_inverted_index.Using | 140 |
| abstract_inverted_index.array | 22 |
| abstract_inverted_index.aware | 83 |
| abstract_inverted_index.based | 154 |
| abstract_inverted_index.data. | 118 |
| abstract_inverted_index.e.g., | 62 |
| abstract_inverted_index.often | 18 |
| abstract_inverted_index.order | 93, 159 |
| abstract_inverted_index.radio | 40 |
| abstract_inverted_index.sense | 113 |
| abstract_inverted_index.unit, | 61 |
| abstract_inverted_index.wired | 74 |
| abstract_inverted_index.works | 100 |
| abstract_inverted_index.Recent | 99 |
| abstract_inverted_index.active | 109 |
| abstract_inverted_index.chains | 43 |
| abstract_inverted_index.hybrid | 103 |
| abstract_inverted_index.Without | 38 |
| abstract_inverted_index.between | 135 |
| abstract_inverted_index.channel | 13, 90 |
| abstract_inverted_index.control | 51, 68, 133 |
| abstract_inverted_index.employs | 148 |
| abstract_inverted_index.enhance | 161 |
| abstract_inverted_index.network | 152, 183 |
| abstract_inverted_index.passive | 21 |
| abstract_inverted_index.process | 116 |
| abstract_inverted_index.propose | 121 |
| abstract_inverted_index.results | 169 |
| abstract_inverted_index.sensing | 143 |
| abstract_inverted_index.station | 65 |
| abstract_inverted_index.surface | 3 |
| abstract_inverted_index.without | 131 |
| abstract_inverted_index.coverage | 32 |
| abstract_inverted_index.elements | 24, 110 |
| abstract_inverted_index.enhances | 11 |
| abstract_inverted_index.entirely | 126 |
| abstract_inverted_index.equipped | 19 |
| abstract_inverted_index.external | 60 |
| abstract_inverted_index.however, | 47 |
| abstract_inverted_index.learning | 157 |
| abstract_inverted_index.network. | 167 |
| abstract_inverted_index.networks | 179 |
| abstract_inverted_index.operates | 130 |
| abstract_inverted_index.provides | 26 |
| abstract_inverted_index.quality. | 14 |
| abstract_inverted_index.received | 117 |
| abstract_inverted_index.requires | 50 |
| abstract_inverted_index.systems. | 37 |
| abstract_inverted_index.wireless | 8, 12, 35, 76, 178 |
| abstract_inverted_index.behavior. | 98 |
| abstract_inverted_index.channels, | 77 |
| abstract_inverted_index.computing | 45 |
| abstract_inverted_index.configure | 96 |
| abstract_inverted_index.delivered | 72 |
| abstract_inverted_index.deploying | 174 |
| abstract_inverted_index.digitally | 115 |
| abstract_inverted_index.elements, | 144 |
| abstract_inverted_index.extension | 33 |
| abstract_inverted_index.frequency | 41 |
| abstract_inverted_index.operation | 123 |
| abstract_inverted_index.overhead. | 184 |
| abstract_inverted_index.potential | 172 |
| abstract_inverted_index.solutions | 30 |
| abstract_inverted_index.autonomous | 127, 146, 175 |
| abstract_inverted_index.conditions | 91 |
| abstract_inverted_index.illustrate | 170 |
| abstract_inverted_index.introduced | 102 |
| abstract_inverted_index.possessing | 106 |
| abstract_inverted_index.resources, | 46 |
| abstract_inverted_index.structures | 105 |
| abstract_inverted_index.technology | 9 |
| abstract_inverted_index.RIS-related | 89 |
| abstract_inverted_index.effectively | 95 |
| abstract_inverted_index.essentially | 181 |
| abstract_inverted_index.information | 52, 69 |
| abstract_inverted_index.intelligent | 2 |
| abstract_inverted_index.prospective | 7 |
| abstract_inverted_index.communication | 36 |
| abstract_inverted_index.reinforcement | 156 |
| abstract_inverted_index.reconfigurable | 1 |
| abstract_inverted_index.power-efficient | 29 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |