A deep reinforcement learning approach for wind speed forecasting Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1080/19942060.2025.2498355
The conventional wind forecasting methods often struggle to handle the non-stationary and inconsistent wind patterns. This paper presents a hybrid method of Empirical Wavelet Transform (EWT) and Deep Reinforcement Learning (DRL) for wind speed modeling to overcome the forecasting challenges. The EWT method transforms the original wind speed series into several independent modes and a residual series. In addition, the DRL method is utilised to optimise the weights associated with three distinct supervised deep learning models, i.e., Long Short-Term Memory (LSTM), Convolutional Neural Networks with LSTM (CNN-LSTM), and CNN with Gated Recurrent Units (CNN-GRU). The performance of the proposed EWT-DRL is evaluated against deep learning models, including LSTM, CNN-LSTM, CNN-GRU, and their coupling with EWT. The combination of EWT and the DRL (EWT-DRL) method achieves a Mean Absolute Error (MAE) of 0.151, a Mean Squared Error (MSE) of 0.060, a Root Mean Squared Error (RMSE) of 0.192, and a correlation coefficient (R) of 0.9913. These results indicate the effectiveness of EWT-DRL in improving accuracy for wind speed modeling.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1080/19942060.2025.2498355
- OA Status
- gold
- Cited By
- 4
- References
- 45
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410141840
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410141840Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1080/19942060.2025.2498355Digital Object Identifier
- Title
-
A deep reinforcement learning approach for wind speed forecastingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-07Full publication date if available
- Authors
-
Shahab S. Band, T. Lin, Sultan Noman Qasem, Rasoul Ameri, Danyal Shahmirzadi, Muhammad Shamrooz Aslam, Hao-Ting Pai, Ely Salwana, Amir MousaviList of authors in order
- Landing page
-
https://doi.org/10.1080/19942060.2025.2498355Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1080/19942060.2025.2498355Direct OA link when available
- Concepts
-
Reinforcement learning, Wind speed, Computer science, Artificial intelligence, Engineering, Simulation, Meteorology, GeographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4Per-year citation counts (last 5 years)
- References (count)
-
45Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410141840 |
|---|---|
| doi | https://doi.org/10.1080/19942060.2025.2498355 |
| ids.doi | https://doi.org/10.1080/19942060.2025.2498355 |
| ids.openalex | https://openalex.org/W4410141840 |
| fwci | 8.08626296 |
| type | article |
| title | A deep reinforcement learning approach for wind speed forecasting |
| biblio.issue | 1 |
| biblio.volume | 19 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11052 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Energy Load and Power Forecasting |
| topics[1].id | https://openalex.org/T11276 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9818000197410583 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Solar Radiation and Photovoltaics |
| topics[2].id | https://openalex.org/T11326 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.977400004863739 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1803 |
| topics[2].subfield.display_name | Management Science and Operations Research |
| topics[2].display_name | Stock Market Forecasting Methods |
| is_xpac | False |
| apc_list.value | 1625 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1993 |
| apc_paid.value | 1625 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1993 |
| concepts[0].id | https://openalex.org/C97541855 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7568258047103882 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[0].display_name | Reinforcement learning |
| concepts[1].id | https://openalex.org/C161067210 |
| concepts[1].level | 2 |
| concepts[1].score | 0.595368504524231 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1464943 |
| concepts[1].display_name | Wind speed |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5388509631156921 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4961446225643158 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C127413603 |
| concepts[4].level | 0 |
| concepts[4].score | 0.33602607250213623 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[4].display_name | Engineering |
| concepts[5].id | https://openalex.org/C44154836 |
| concepts[5].level | 1 |
| concepts[5].score | 0.32733288407325745 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q45045 |
| concepts[5].display_name | Simulation |
| concepts[6].id | https://openalex.org/C153294291 |
| concepts[6].level | 1 |
| concepts[6].score | 0.2584385871887207 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[6].display_name | Meteorology |
| concepts[7].id | https://openalex.org/C205649164 |
| concepts[7].level | 0 |
| concepts[7].score | 0.0726066529750824 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[7].display_name | Geography |
| keywords[0].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[0].score | 0.7568258047103882 |
| keywords[0].display_name | Reinforcement learning |
| keywords[1].id | https://openalex.org/keywords/wind-speed |
| keywords[1].score | 0.595368504524231 |
| keywords[1].display_name | Wind speed |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5388509631156921 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.4961446225643158 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/engineering |
| keywords[4].score | 0.33602607250213623 |
| keywords[4].display_name | Engineering |
| keywords[5].id | https://openalex.org/keywords/simulation |
| keywords[5].score | 0.32733288407325745 |
| keywords[5].display_name | Simulation |
| keywords[6].id | https://openalex.org/keywords/meteorology |
| keywords[6].score | 0.2584385871887207 |
| keywords[6].display_name | Meteorology |
| keywords[7].id | https://openalex.org/keywords/geography |
| keywords[7].score | 0.0726066529750824 |
| keywords[7].display_name | Geography |
| language | en |
| locations[0].id | doi:10.1080/19942060.2025.2498355 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S15260174 |
| locations[0].source.issn | 1994-2060, 1997-003X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1994-2060 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Engineering Applications of Computational Fluid Mechanics |
| locations[0].source.host_organization | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_name | Taylor & Francis |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_lineage_names | Taylor & Francis |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Engineering Applications of Computational Fluid Mechanics |
| locations[0].landing_page_url | https://doi.org/10.1080/19942060.2025.2498355 |
| locations[1].id | pmh:oai:doaj.org/article:ef2d1debde3f4606a868ce6295339f22 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Engineering Applications of Computational Fluid Mechanics, Vol 19, Iss 1 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/ef2d1debde3f4606a868ce6295339f22 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5006293953 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6109-1311 |
| authorships[0].author.display_name | Shahab S. Band |
| authorships[0].countries | TW |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I75357094 |
| authorships[0].affiliations[0].raw_affiliation_string | National Yunlin University of Science and Technology |
| authorships[0].institutions[0].id | https://openalex.org/I75357094 |
| authorships[0].institutions[0].ror | https://ror.org/04qkq2m54 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I75357094 |
| authorships[0].institutions[0].country_code | TW |
| authorships[0].institutions[0].display_name | National Yunlin University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shahab S. Band |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | National Yunlin University of Science and Technology |
| authorships[1].author.id | https://openalex.org/A5101961197 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6450-9629 |
| authorships[1].author.display_name | T. Lin |
| authorships[1].countries | TW |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I75357094 |
| authorships[1].affiliations[0].raw_affiliation_string | National Yunlin University of Science and Technology |
| authorships[1].institutions[0].id | https://openalex.org/I75357094 |
| authorships[1].institutions[0].ror | https://ror.org/04qkq2m54 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I75357094 |
| authorships[1].institutions[0].country_code | TW |
| authorships[1].institutions[0].display_name | National Yunlin University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ting Jia Lin |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | National Yunlin University of Science and Technology |
| authorships[2].author.id | https://openalex.org/A5012596219 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6575-161X |
| authorships[2].author.display_name | Sultan Noman Qasem |
| authorships[2].countries | BD, YE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I40279923 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU) |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I36197038 |
| authorships[2].affiliations[1].raw_affiliation_string | Faculty of Applied Science, Taiz University |
| authorships[2].institutions[0].id | https://openalex.org/I40279923 |
| authorships[2].institutions[0].ror | https://ror.org/04j1w0q97 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I40279923 |
| authorships[2].institutions[0].country_code | BD |
| authorships[2].institutions[0].display_name | Islamic University |
| authorships[2].institutions[1].id | https://openalex.org/I36197038 |
| authorships[2].institutions[1].ror | https://ror.org/03jwcxq96 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I36197038 |
| authorships[2].institutions[1].country_code | YE |
| authorships[2].institutions[1].display_name | Taiz University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sultan Noman Qasem |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Faculty of Applied Science, Taiz University |
| authorships[3].author.id | https://openalex.org/A5020466823 |
| authorships[3].author.orcid | https://orcid.org/0009-0004-5727-216X |
| authorships[3].author.display_name | Rasoul Ameri |
| authorships[3].countries | TW |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I75357094 |
| authorships[3].affiliations[0].raw_affiliation_string | National Yunlin University of Science and Technology |
| authorships[3].institutions[0].id | https://openalex.org/I75357094 |
| authorships[3].institutions[0].ror | https://ror.org/04qkq2m54 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I75357094 |
| authorships[3].institutions[0].country_code | TW |
| authorships[3].institutions[0].display_name | National Yunlin University of Science and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Rasoul Ameri |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | National Yunlin University of Science and Technology |
| authorships[4].author.id | https://openalex.org/A5094278448 |
| authorships[4].author.orcid | https://orcid.org/0009-0000-0180-0729 |
| authorships[4].author.display_name | Danyal Shahmirzadi |
| authorships[4].countries | TW |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I75357094 |
| authorships[4].affiliations[0].raw_affiliation_string | National Yunlin University of Science and Technology |
| authorships[4].institutions[0].id | https://openalex.org/I75357094 |
| authorships[4].institutions[0].ror | https://ror.org/04qkq2m54 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I75357094 |
| authorships[4].institutions[0].country_code | TW |
| authorships[4].institutions[0].display_name | National Yunlin University of Science and Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Danyal Shahmirzadi |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | National Yunlin University of Science and Technology |
| authorships[5].author.id | https://openalex.org/A5069749585 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7622-1788 |
| authorships[5].author.display_name | Muhammad Shamrooz Aslam |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I25757504 |
| authorships[5].affiliations[0].raw_affiliation_string | China University of Mining and Technology |
| authorships[5].institutions[0].id | https://openalex.org/I25757504 |
| authorships[5].institutions[0].ror | https://ror.org/01xt2dr21 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I25757504 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | China University of Mining and Technology |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Muhammad Shamrooz Aslam |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | China University of Mining and Technology |
| authorships[6].author.id | https://openalex.org/A5034429792 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-6993-1343 |
| authorships[6].author.display_name | Hao-Ting Pai |
| authorships[6].countries | TW |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I1309796872 |
| authorships[6].affiliations[0].raw_affiliation_string | National Pingtung University |
| authorships[6].institutions[0].id | https://openalex.org/I1309796872 |
| authorships[6].institutions[0].ror | https://ror.org/03z698x91 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I1309796872 |
| authorships[6].institutions[0].country_code | TW |
| authorships[6].institutions[0].display_name | National Pingtung University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Hao-Ting Pai |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | National Pingtung University |
| authorships[7].author.id | https://openalex.org/A5039636744 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Ely Salwana |
| authorships[7].countries | MY |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I885383172 |
| authorships[7].affiliations[0].raw_affiliation_string | Universiti Kebangsaan Malaysia |
| authorships[7].institutions[0].id | https://openalex.org/I885383172 |
| authorships[7].institutions[0].ror | https://ror.org/00bw8d226 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I885383172 |
| authorships[7].institutions[0].country_code | MY |
| authorships[7].institutions[0].display_name | National University of Malaysia |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Ely Salwana |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Universiti Kebangsaan Malaysia |
| authorships[8].author.id | https://openalex.org/A5108832646 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Amir Mousavi |
| authorships[8].countries | HU, KZ |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I4210131705 |
| authorships[8].affiliations[0].raw_affiliation_string | Abylkas Saginov Karaganda Technical University |
| authorships[8].affiliations[1].institution_ids | https://openalex.org/I1331168281 |
| authorships[8].affiliations[1].raw_affiliation_string | Ludovika University of Public Service |
| authorships[8].affiliations[2].institution_ids | https://openalex.org/I103356709 |
| authorships[8].affiliations[2].raw_affiliation_string | Obuda University |
| authorships[8].institutions[0].id | https://openalex.org/I1331168281 |
| authorships[8].institutions[0].ror | https://ror.org/040yeqy86 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I1331168281 |
| authorships[8].institutions[0].country_code | HU |
| authorships[8].institutions[0].display_name | Ludovika University of Public Service |
| authorships[8].institutions[1].id | https://openalex.org/I103356709 |
| authorships[8].institutions[1].ror | https://ror.org/00ax71d21 |
| authorships[8].institutions[1].type | education |
| authorships[8].institutions[1].lineage | https://openalex.org/I103356709 |
| authorships[8].institutions[1].country_code | HU |
| authorships[8].institutions[1].display_name | Obuda University |
| authorships[8].institutions[2].id | https://openalex.org/I4210131705 |
| authorships[8].institutions[2].ror | https://ror.org/03x368n87 |
| authorships[8].institutions[2].type | education |
| authorships[8].institutions[2].lineage | https://openalex.org/I4210131705 |
| authorships[8].institutions[2].country_code | KZ |
| authorships[8].institutions[2].display_name | Abylkas Saginov Karaganda Technical University |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Amir Mousavi |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Abylkas Saginov Karaganda Technical University, Ludovika University of Public Service, Obuda University |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1080/19942060.2025.2498355 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A deep reinforcement learning approach for wind speed forecasting |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11052 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Energy Load and Power Forecasting |
| related_works | https://openalex.org/W4306904969, https://openalex.org/W2138720691, https://openalex.org/W4362501864, https://openalex.org/W4380318855, https://openalex.org/W3084456289, https://openalex.org/W2024136090, https://openalex.org/W4391331176, https://openalex.org/W2031695474, https://openalex.org/W2586732548, https://openalex.org/W2964765435 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1080/19942060.2025.2498355 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S15260174 |
| best_oa_location.source.issn | 1994-2060, 1997-003X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1994-2060 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Engineering Applications of Computational Fluid Mechanics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320547 |
| best_oa_location.source.host_organization_name | Taylor & Francis |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| best_oa_location.source.host_organization_lineage_names | Taylor & Francis |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Engineering Applications of Computational Fluid Mechanics |
| best_oa_location.landing_page_url | https://doi.org/10.1080/19942060.2025.2498355 |
| primary_location.id | doi:10.1080/19942060.2025.2498355 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S15260174 |
| primary_location.source.issn | 1994-2060, 1997-003X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1994-2060 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Engineering Applications of Computational Fluid Mechanics |
| primary_location.source.host_organization | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_name | Taylor & Francis |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_lineage_names | Taylor & Francis |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Engineering Applications of Computational Fluid Mechanics |
| primary_location.landing_page_url | https://doi.org/10.1080/19942060.2025.2498355 |
| publication_date | 2025-05-07 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3093663925, https://openalex.org/W2104318460, https://openalex.org/W2314720829, https://openalex.org/W3156856498, https://openalex.org/W1148501325, https://openalex.org/W4381885438, https://openalex.org/W4390599078, https://openalex.org/W4396816462, https://openalex.org/W2019900743, https://openalex.org/W1985643209, https://openalex.org/W2474548446, https://openalex.org/W3067025290, https://openalex.org/W4280506281, https://openalex.org/W4387967410, https://openalex.org/W2600292797, https://openalex.org/W1967410711, https://openalex.org/W2068372279, https://openalex.org/W2944487131, https://openalex.org/W2945236236, https://openalex.org/W3080928054, https://openalex.org/W3023213286, https://openalex.org/W3089243611, https://openalex.org/W4284971318, https://openalex.org/W2132634326, https://openalex.org/W3019251610, https://openalex.org/W4281263248, https://openalex.org/W4391275467, https://openalex.org/W2977676336, https://openalex.org/W4307290015, https://openalex.org/W4220770336, https://openalex.org/W4379046988, https://openalex.org/W3210949796, https://openalex.org/W3132882148, https://openalex.org/W3136869421, https://openalex.org/W4390032673, https://openalex.org/W2749997774, https://openalex.org/W2114471530, https://openalex.org/W2158671777, https://openalex.org/W2016752668, https://openalex.org/W2944851425, https://openalex.org/W3151571517, https://openalex.org/W1970071487, https://openalex.org/W4391377435, https://openalex.org/W1908816480, https://openalex.org/W2526529994 |
| referenced_works_count | 45 |
| abstract_inverted_index.a | 18, 54, 125, 132, 139, 148 |
| abstract_inverted_index.In | 57 |
| abstract_inverted_index.in | 161 |
| abstract_inverted_index.is | 62, 100 |
| abstract_inverted_index.of | 21, 96, 117, 130, 137, 145, 152, 159 |
| abstract_inverted_index.to | 7, 35, 64 |
| abstract_inverted_index.(R) | 151 |
| abstract_inverted_index.CNN | 88 |
| abstract_inverted_index.DRL | 60, 121 |
| abstract_inverted_index.EWT | 41, 118 |
| abstract_inverted_index.The | 0, 40, 94, 115 |
| abstract_inverted_index.and | 11, 26, 53, 87, 110, 119, 147 |
| abstract_inverted_index.for | 31, 164 |
| abstract_inverted_index.the | 9, 37, 44, 59, 66, 97, 120, 157 |
| abstract_inverted_index.Deep | 27 |
| abstract_inverted_index.EWT. | 114 |
| abstract_inverted_index.LSTM | 85 |
| abstract_inverted_index.Long | 77 |
| abstract_inverted_index.Mean | 126, 133, 141 |
| abstract_inverted_index.Root | 140 |
| abstract_inverted_index.This | 15 |
| abstract_inverted_index.deep | 73, 103 |
| abstract_inverted_index.into | 49 |
| abstract_inverted_index.wind | 2, 13, 32, 46, 165 |
| abstract_inverted_index.with | 69, 84, 89, 113 |
| abstract_inverted_index.(DRL) | 30 |
| abstract_inverted_index.(EWT) | 25 |
| abstract_inverted_index.(MAE) | 129 |
| abstract_inverted_index.(MSE) | 136 |
| abstract_inverted_index.Error | 128, 135, 143 |
| abstract_inverted_index.Gated | 90 |
| abstract_inverted_index.LSTM, | 107 |
| abstract_inverted_index.These | 154 |
| abstract_inverted_index.Units | 92 |
| abstract_inverted_index.i.e., | 76 |
| abstract_inverted_index.modes | 52 |
| abstract_inverted_index.often | 5 |
| abstract_inverted_index.paper | 16 |
| abstract_inverted_index.speed | 33, 47, 166 |
| abstract_inverted_index.their | 111 |
| abstract_inverted_index.three | 70 |
| abstract_inverted_index.(RMSE) | 144 |
| abstract_inverted_index.0.060, | 138 |
| abstract_inverted_index.0.151, | 131 |
| abstract_inverted_index.0.192, | 146 |
| abstract_inverted_index.Memory | 79 |
| abstract_inverted_index.Neural | 82 |
| abstract_inverted_index.handle | 8 |
| abstract_inverted_index.hybrid | 19 |
| abstract_inverted_index.method | 20, 42, 61, 123 |
| abstract_inverted_index.series | 48 |
| abstract_inverted_index.(LSTM), | 80 |
| abstract_inverted_index.0.9913. | 153 |
| abstract_inverted_index.EWT-DRL | 99, 160 |
| abstract_inverted_index.Squared | 134, 142 |
| abstract_inverted_index.Wavelet | 23 |
| abstract_inverted_index.against | 102 |
| abstract_inverted_index.methods | 4 |
| abstract_inverted_index.models, | 75, 105 |
| abstract_inverted_index.results | 155 |
| abstract_inverted_index.series. | 56 |
| abstract_inverted_index.several | 50 |
| abstract_inverted_index.weights | 67 |
| abstract_inverted_index.Absolute | 127 |
| abstract_inverted_index.CNN-GRU, | 109 |
| abstract_inverted_index.Learning | 29 |
| abstract_inverted_index.Networks | 83 |
| abstract_inverted_index.accuracy | 163 |
| abstract_inverted_index.achieves | 124 |
| abstract_inverted_index.coupling | 112 |
| abstract_inverted_index.distinct | 71 |
| abstract_inverted_index.indicate | 156 |
| abstract_inverted_index.learning | 74, 104 |
| abstract_inverted_index.modeling | 34 |
| abstract_inverted_index.optimise | 65 |
| abstract_inverted_index.original | 45 |
| abstract_inverted_index.overcome | 36 |
| abstract_inverted_index.presents | 17 |
| abstract_inverted_index.proposed | 98 |
| abstract_inverted_index.residual | 55 |
| abstract_inverted_index.struggle | 6 |
| abstract_inverted_index.utilised | 63 |
| abstract_inverted_index.(EWT-DRL) | 122 |
| abstract_inverted_index.CNN-LSTM, | 108 |
| abstract_inverted_index.Empirical | 22 |
| abstract_inverted_index.Recurrent | 91 |
| abstract_inverted_index.Transform | 24 |
| abstract_inverted_index.addition, | 58 |
| abstract_inverted_index.evaluated | 101 |
| abstract_inverted_index.improving | 162 |
| abstract_inverted_index.including | 106 |
| abstract_inverted_index.modeling. | 167 |
| abstract_inverted_index.patterns. | 14 |
| abstract_inverted_index.(CNN-GRU). | 93 |
| abstract_inverted_index.Short-Term | 78 |
| abstract_inverted_index.associated | 68 |
| abstract_inverted_index.supervised | 72 |
| abstract_inverted_index.transforms | 43 |
| abstract_inverted_index.(CNN-LSTM), | 86 |
| abstract_inverted_index.challenges. | 39 |
| abstract_inverted_index.coefficient | 150 |
| abstract_inverted_index.combination | 116 |
| abstract_inverted_index.correlation | 149 |
| abstract_inverted_index.forecasting | 3, 38 |
| abstract_inverted_index.independent | 51 |
| abstract_inverted_index.performance | 95 |
| abstract_inverted_index.conventional | 1 |
| abstract_inverted_index.inconsistent | 12 |
| abstract_inverted_index.Convolutional | 81 |
| abstract_inverted_index.Reinforcement | 28 |
| abstract_inverted_index.effectiveness | 158 |
| abstract_inverted_index.non-stationary | 10 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 7 |
| institutions_distinct_count | 9 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.7799999713897705 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.94675766 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |