A Density-Based Approach to the Retrieval of Top-K Spatial Textual Clusters Article Swipe
YOU?
·
· 2016
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1607.08681
Keyword-based web queries with local intent retrieve web content that is relevant to supplied keywords and that represent points of interest that are near the query location. Two broad categories of such queries exist. The first encompasses queries that retrieve single spatial web objects that each satisfy the query arguments. Most proposals belong to this category. The second category, to which this paper's proposal belongs, encompasses queries that support exploratory user behavior and retrieve sets of objects that represent regions of space that may be of interest to the user. Specifically, the paper proposes a new type of query, namely the top-k spatial textual clusters (k-STC) query that returns the top-k clusters that (i) are located the closest to a given query location, (ii) contain the most relevant objects with regard to given query keywords, and (iii) have an object density that exceeds a given threshold. To compute this query, we propose a basic algorithm that relies on on-line density-based clustering and exploits an early stop condition. To improve the response time, we design an advanced approach that includes three techniques: (i) an object skipping rule, (ii) spatially gridded posting lists, and (iii) a fast range query algorithm. An empirical study on real data demonstrates that the paper's proposals offer scalability and are capable of excellent performance.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1607.08681
- https://arxiv.org/pdf/1607.08681
- OA Status
- green
- References
- 34
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2952501509
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2952501509Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1607.08681Digital Object Identifier
- Title
-
A Density-Based Approach to the Retrieval of Top-K Spatial Textual ClustersWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2016Year of publication
- Publication date
-
2016-07-29Full publication date if available
- Authors
-
Dingming Wu, Christian S. JensenList of authors in order
- Landing page
-
https://arxiv.org/abs/1607.08681Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1607.08681Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1607.08681Direct OA link when available
- Concepts
-
Computer science, Web query classification, Information retrieval, Query expansion, Scalability, Range query (database), Web search query, Spatial query, Query optimization, Object (grammar), Query language, Sargable, Cluster analysis, Data mining, Search engine, Database, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
34Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2952501509 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1607.08681 |
| ids.doi | https://doi.org/10.48550/arxiv.1607.08681 |
| ids.mag | 2952501509 |
| ids.openalex | https://openalex.org/W2952501509 |
| fwci | |
| type | preprint |
| title | A Density-Based Approach to the Retrieval of Top-K Spatial Textual Clusters |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11106 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Data Management and Algorithms |
| topics[1].id | https://openalex.org/T10757 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9925000071525574 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3305 |
| topics[1].subfield.display_name | Geography, Planning and Development |
| topics[1].display_name | Geographic Information Systems Studies |
| topics[2].id | https://openalex.org/T11980 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.9800999760627747 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3313 |
| topics[2].subfield.display_name | Transportation |
| topics[2].display_name | Human Mobility and Location-Based Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7980155944824219 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C118689300 |
| concepts[1].level | 4 |
| concepts[1].score | 0.7144245505332947 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7978614 |
| concepts[1].display_name | Web query classification |
| concepts[2].id | https://openalex.org/C23123220 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6930984258651733 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[2].display_name | Information retrieval |
| concepts[3].id | https://openalex.org/C99016210 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6614847779273987 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5488129 |
| concepts[3].display_name | Query expansion |
| concepts[4].id | https://openalex.org/C48044578 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6288900375366211 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[4].display_name | Scalability |
| concepts[5].id | https://openalex.org/C136736807 |
| concepts[5].level | 5 |
| concepts[5].score | 0.5604473948478699 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q818943 |
| concepts[5].display_name | Range query (database) |
| concepts[6].id | https://openalex.org/C164120249 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5523942112922668 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q995982 |
| concepts[6].display_name | Web search query |
| concepts[7].id | https://openalex.org/C172722865 |
| concepts[7].level | 5 |
| concepts[7].score | 0.5488080978393555 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2302053 |
| concepts[7].display_name | Spatial query |
| concepts[8].id | https://openalex.org/C157692150 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5431342720985413 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2919848 |
| concepts[8].display_name | Query optimization |
| concepts[9].id | https://openalex.org/C2781238097 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5390557050704956 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[9].display_name | Object (grammar) |
| concepts[10].id | https://openalex.org/C192028432 |
| concepts[10].level | 2 |
| concepts[10].score | 0.474502295255661 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q845739 |
| concepts[10].display_name | Query language |
| concepts[11].id | https://openalex.org/C192939062 |
| concepts[11].level | 4 |
| concepts[11].score | 0.4469682574272156 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q104840822 |
| concepts[11].display_name | Sargable |
| concepts[12].id | https://openalex.org/C73555534 |
| concepts[12].level | 2 |
| concepts[12].score | 0.42827799916267395 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[12].display_name | Cluster analysis |
| concepts[13].id | https://openalex.org/C124101348 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3970031440258026 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[13].display_name | Data mining |
| concepts[14].id | https://openalex.org/C97854310 |
| concepts[14].level | 2 |
| concepts[14].score | 0.2738851308822632 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q19541 |
| concepts[14].display_name | Search engine |
| concepts[15].id | https://openalex.org/C77088390 |
| concepts[15].level | 1 |
| concepts[15].score | 0.2522647976875305 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[15].display_name | Database |
| concepts[16].id | https://openalex.org/C154945302 |
| concepts[16].level | 1 |
| concepts[16].score | 0.10185685753822327 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[16].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7980155944824219 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/web-query-classification |
| keywords[1].score | 0.7144245505332947 |
| keywords[1].display_name | Web query classification |
| keywords[2].id | https://openalex.org/keywords/information-retrieval |
| keywords[2].score | 0.6930984258651733 |
| keywords[2].display_name | Information retrieval |
| keywords[3].id | https://openalex.org/keywords/query-expansion |
| keywords[3].score | 0.6614847779273987 |
| keywords[3].display_name | Query expansion |
| keywords[4].id | https://openalex.org/keywords/scalability |
| keywords[4].score | 0.6288900375366211 |
| keywords[4].display_name | Scalability |
| keywords[5].id | https://openalex.org/keywords/range-query |
| keywords[5].score | 0.5604473948478699 |
| keywords[5].display_name | Range query (database) |
| keywords[6].id | https://openalex.org/keywords/web-search-query |
| keywords[6].score | 0.5523942112922668 |
| keywords[6].display_name | Web search query |
| keywords[7].id | https://openalex.org/keywords/spatial-query |
| keywords[7].score | 0.5488080978393555 |
| keywords[7].display_name | Spatial query |
| keywords[8].id | https://openalex.org/keywords/query-optimization |
| keywords[8].score | 0.5431342720985413 |
| keywords[8].display_name | Query optimization |
| keywords[9].id | https://openalex.org/keywords/object |
| keywords[9].score | 0.5390557050704956 |
| keywords[9].display_name | Object (grammar) |
| keywords[10].id | https://openalex.org/keywords/query-language |
| keywords[10].score | 0.474502295255661 |
| keywords[10].display_name | Query language |
| keywords[11].id | https://openalex.org/keywords/sargable |
| keywords[11].score | 0.4469682574272156 |
| keywords[11].display_name | Sargable |
| keywords[12].id | https://openalex.org/keywords/cluster-analysis |
| keywords[12].score | 0.42827799916267395 |
| keywords[12].display_name | Cluster analysis |
| keywords[13].id | https://openalex.org/keywords/data-mining |
| keywords[13].score | 0.3970031440258026 |
| keywords[13].display_name | Data mining |
| keywords[14].id | https://openalex.org/keywords/search-engine |
| keywords[14].score | 0.2738851308822632 |
| keywords[14].display_name | Search engine |
| keywords[15].id | https://openalex.org/keywords/database |
| keywords[15].score | 0.2522647976875305 |
| keywords[15].display_name | Database |
| keywords[16].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[16].score | 0.10185685753822327 |
| keywords[16].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1607.08681 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1607.08681 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1607.08681 |
| locations[1].id | doi:10.48550/arxiv.1607.08681 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1607.08681 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5102013176 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7901-9876 |
| authorships[0].author.display_name | Dingming Wu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dingming Wu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5029380368 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9697-7670 |
| authorships[1].author.display_name | Christian S. Jensen |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Christian S. Jensen |
| authorships[1].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1607.08681 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Density-Based Approach to the Retrieval of Top-K Spatial Textual Clusters |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11106 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Data Management and Algorithms |
| related_works | https://openalex.org/W2096359267, https://openalex.org/W2901901036, https://openalex.org/W2006459955, https://openalex.org/W2013069866, https://openalex.org/W2026738364, https://openalex.org/W1793997780, https://openalex.org/W2395027054, https://openalex.org/W906795786, https://openalex.org/W2584018254, https://openalex.org/W2083222330 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1607.08681 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1607.08681 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1607.08681 |
| primary_location.id | pmh:oai:arXiv.org:1607.08681 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1607.08681 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1607.08681 |
| publication_date | 2016-07-29 |
| publication_year | 2016 |
| referenced_works | https://openalex.org/W2126751256, https://openalex.org/W2037562342, https://openalex.org/W2135503940, https://openalex.org/W2118269922, https://openalex.org/W2165612380, https://openalex.org/W2100156887, https://openalex.org/W2122872794, https://openalex.org/W2141935561, https://openalex.org/W1673310716, https://openalex.org/W2101903378, https://openalex.org/W2160642098, https://openalex.org/W2109119832, https://openalex.org/W2151345349, https://openalex.org/W2158051918, https://openalex.org/W1996482644, https://openalex.org/W2107056341, https://openalex.org/W2120438042, https://openalex.org/W1990974055, https://openalex.org/W2155019111, https://openalex.org/W2003645866, https://openalex.org/W2056197191, https://openalex.org/W2028327419, https://openalex.org/W2073083495, https://openalex.org/W2147596559, https://openalex.org/W1991128947, https://openalex.org/W2140048308, https://openalex.org/W2122868005, https://openalex.org/W2093390569, https://openalex.org/W2160128361, https://openalex.org/W1531963106, https://openalex.org/W2006307108, https://openalex.org/W2165735734, https://openalex.org/W2169307587, https://openalex.org/W1852700332 |
| referenced_works_count | 34 |
| abstract_inverted_index.a | 94, 119, 143, 152, 193 |
| abstract_inverted_index.An | 198 |
| abstract_inverted_index.To | 146, 167 |
| abstract_inverted_index.an | 138, 163, 174, 182 |
| abstract_inverted_index.be | 84 |
| abstract_inverted_index.is | 10 |
| abstract_inverted_index.of | 19, 30, 75, 80, 85, 97, 214 |
| abstract_inverted_index.on | 157, 201 |
| abstract_inverted_index.to | 12, 53, 59, 87, 118, 131 |
| abstract_inverted_index.we | 150, 172 |
| abstract_inverted_index.(i) | 113, 181 |
| abstract_inverted_index.The | 34, 56 |
| abstract_inverted_index.Two | 27 |
| abstract_inverted_index.and | 15, 72, 135, 161, 191, 211 |
| abstract_inverted_index.are | 22, 114, 212 |
| abstract_inverted_index.may | 83 |
| abstract_inverted_index.new | 95 |
| abstract_inverted_index.the | 24, 47, 88, 91, 100, 109, 116, 125, 169, 206 |
| abstract_inverted_index.web | 1, 7, 42 |
| abstract_inverted_index.(ii) | 123, 186 |
| abstract_inverted_index.Most | 50 |
| abstract_inverted_index.data | 203 |
| abstract_inverted_index.each | 45 |
| abstract_inverted_index.fast | 194 |
| abstract_inverted_index.have | 137 |
| abstract_inverted_index.most | 126 |
| abstract_inverted_index.near | 23 |
| abstract_inverted_index.real | 202 |
| abstract_inverted_index.sets | 74 |
| abstract_inverted_index.stop | 165 |
| abstract_inverted_index.such | 31 |
| abstract_inverted_index.that | 9, 16, 21, 38, 44, 67, 77, 82, 107, 112, 141, 155, 177, 205 |
| abstract_inverted_index.this | 54, 61, 148 |
| abstract_inverted_index.type | 96 |
| abstract_inverted_index.user | 70 |
| abstract_inverted_index.with | 3, 129 |
| abstract_inverted_index.(iii) | 136, 192 |
| abstract_inverted_index.basic | 153 |
| abstract_inverted_index.broad | 28 |
| abstract_inverted_index.early | 164 |
| abstract_inverted_index.first | 35 |
| abstract_inverted_index.given | 120, 132, 144 |
| abstract_inverted_index.local | 4 |
| abstract_inverted_index.offer | 209 |
| abstract_inverted_index.paper | 92 |
| abstract_inverted_index.query | 25, 48, 106, 121, 133, 196 |
| abstract_inverted_index.range | 195 |
| abstract_inverted_index.rule, | 185 |
| abstract_inverted_index.space | 81 |
| abstract_inverted_index.study | 200 |
| abstract_inverted_index.three | 179 |
| abstract_inverted_index.time, | 171 |
| abstract_inverted_index.top-k | 101, 110 |
| abstract_inverted_index.user. | 89 |
| abstract_inverted_index.which | 60 |
| abstract_inverted_index.belong | 52 |
| abstract_inverted_index.design | 173 |
| abstract_inverted_index.exist. | 33 |
| abstract_inverted_index.intent | 5 |
| abstract_inverted_index.lists, | 190 |
| abstract_inverted_index.namely | 99 |
| abstract_inverted_index.object | 139, 183 |
| abstract_inverted_index.points | 18 |
| abstract_inverted_index.query, | 98, 149 |
| abstract_inverted_index.regard | 130 |
| abstract_inverted_index.relies | 156 |
| abstract_inverted_index.second | 57 |
| abstract_inverted_index.single | 40 |
| abstract_inverted_index.(k-STC) | 105 |
| abstract_inverted_index.capable | 213 |
| abstract_inverted_index.closest | 117 |
| abstract_inverted_index.compute | 147 |
| abstract_inverted_index.contain | 124 |
| abstract_inverted_index.content | 8 |
| abstract_inverted_index.density | 140 |
| abstract_inverted_index.exceeds | 142 |
| abstract_inverted_index.gridded | 188 |
| abstract_inverted_index.improve | 168 |
| abstract_inverted_index.located | 115 |
| abstract_inverted_index.objects | 43, 76, 128 |
| abstract_inverted_index.on-line | 158 |
| abstract_inverted_index.paper's | 62, 207 |
| abstract_inverted_index.posting | 189 |
| abstract_inverted_index.propose | 151 |
| abstract_inverted_index.queries | 2, 32, 37, 66 |
| abstract_inverted_index.regions | 79 |
| abstract_inverted_index.returns | 108 |
| abstract_inverted_index.satisfy | 46 |
| abstract_inverted_index.spatial | 41, 102 |
| abstract_inverted_index.support | 68 |
| abstract_inverted_index.textual | 103 |
| abstract_inverted_index.advanced | 175 |
| abstract_inverted_index.approach | 176 |
| abstract_inverted_index.behavior | 71 |
| abstract_inverted_index.belongs, | 64 |
| abstract_inverted_index.clusters | 104, 111 |
| abstract_inverted_index.exploits | 162 |
| abstract_inverted_index.includes | 178 |
| abstract_inverted_index.interest | 20, 86 |
| abstract_inverted_index.keywords | 14 |
| abstract_inverted_index.proposal | 63 |
| abstract_inverted_index.proposes | 93 |
| abstract_inverted_index.relevant | 11, 127 |
| abstract_inverted_index.response | 170 |
| abstract_inverted_index.retrieve | 6, 39, 73 |
| abstract_inverted_index.skipping | 184 |
| abstract_inverted_index.supplied | 13 |
| abstract_inverted_index.algorithm | 154 |
| abstract_inverted_index.category, | 58 |
| abstract_inverted_index.category. | 55 |
| abstract_inverted_index.empirical | 199 |
| abstract_inverted_index.excellent | 215 |
| abstract_inverted_index.keywords, | 134 |
| abstract_inverted_index.location, | 122 |
| abstract_inverted_index.location. | 26 |
| abstract_inverted_index.proposals | 51, 208 |
| abstract_inverted_index.represent | 17, 78 |
| abstract_inverted_index.spatially | 187 |
| abstract_inverted_index.algorithm. | 197 |
| abstract_inverted_index.arguments. | 49 |
| abstract_inverted_index.categories | 29 |
| abstract_inverted_index.clustering | 160 |
| abstract_inverted_index.condition. | 166 |
| abstract_inverted_index.threshold. | 145 |
| abstract_inverted_index.encompasses | 36, 65 |
| abstract_inverted_index.exploratory | 69 |
| abstract_inverted_index.scalability | 210 |
| abstract_inverted_index.techniques: | 180 |
| abstract_inverted_index.demonstrates | 204 |
| abstract_inverted_index.performance. | 216 |
| abstract_inverted_index.Keyword-based | 0 |
| abstract_inverted_index.Specifically, | 90 |
| abstract_inverted_index.density-based | 159 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.47999998927116394 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |