A Diffusion-Based Probabilistic Ultra-Short-Term Solar Power Prediction Using the Sky Image Sequences Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/access.2025.3600713
The inherently unpredictable nature of solar power generation, primarily due to rapidly changing cloud cover, poses a significant challenge to the operation of solar-integrated energy systems. Accurate ultra-short-term PhotoVoltaic (PV) power forecasting is crucial for the efficient and reliable operation of these energy systems. Recently, cloud images, providing more direct and comprehensive information about cloud patterns than on-site or off-site numerical weather prediction data, have become increasingly accessible for analyzing cloud dynamics, enabling more precise and efficient cloud change predictions. To enhance PV power probabilistic forecasting, this paper proposes a novel diffusion-based framework that leverages cross-attention on multi-resolution sky image patches. Central to this framework is the Cross Branch Visual Informer (CB-ViInf), the first model to integrate multi-resolution patches into the Vision Informer architecture, improving feature extraction and temporal modeling for solar forecasting. Furthermore, we propose an innovative Temporal Encoder with a dual-block architecture to refine temporal dependencies. The first block leverages Spatiotemporal Ridgelet Transform (STRT) and Multi-Frame Adaptive Singular Value Decomposition (MF-ASVD) as a dynamic feature refinement process, reducing noise and computational complexity while preserving critical features. The second block, a Spatio-Temporal Attention mechanism, simultaneously incorporates local and global attentions to capture fine-grained short-term variations and broader trends, enhancing adaptability to rapid cloud movements and irradiance fluctuations. Additionally, we propose a novel loss function based on Variational Inference and the Evidence Lower Bound (ELBO) to improve uncertainty quantification and prediction accuracy. Extensive evaluations on a real-world dataset against 64 baseline models using four evaluation metrics demonstrate the superiority of the proposed framework, establishing it as a state-of-the-art approach in ultra-short-term PV power forecasting. The proposed model offers an accurate, robust, and uncertainty-aware solar power forecasting methodology for improved power system operation and management.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2025.3600713
- OA Status
- gold
- References
- 51
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413359301
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413359301Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2025.3600713Digital Object Identifier
- Title
-
A Diffusion-Based Probabilistic Ultra-Short-Term Solar Power Prediction Using the Sky Image SequencesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Razieh Rastgoo, Nima Amjady, Rakibuzzaman Shah, S. M. MuyeenList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2025.3600713Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/access.2025.3600713Direct OA link when available
- Concepts
-
Term (time), Probabilistic logic, Diffusion, Computer science, Sky, Artificial intelligence, Meteorology, Physics, Astronomy, ThermodynamicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
51Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413359301 |
|---|---|
| doi | https://doi.org/10.1109/access.2025.3600713 |
| ids.doi | https://doi.org/10.1109/access.2025.3600713 |
| ids.openalex | https://openalex.org/W4413359301 |
| fwci | 0.0 |
| type | article |
| title | A Diffusion-Based Probabilistic Ultra-Short-Term Solar Power Prediction Using the Sky Image Sequences |
| awards[0].id | https://openalex.org/G8005685736 |
| awards[0].funder_id | https://openalex.org/F4320322472 |
| awards[0].display_name | |
| awards[0].funder_award_id | Open Access funding provided by the Qatar National |
| awards[0].funder_display_name | Qatar University |
| awards[1].id | https://openalex.org/G2766790588 |
| awards[1].funder_id | https://openalex.org/F4320322472 |
| awards[1].display_name | |
| awards[1].funder_award_id | ARG01-0504-230073 |
| awards[1].funder_display_name | Qatar University |
| biblio.issue | |
| biblio.volume | 13 |
| biblio.last_page | 149553 |
| biblio.first_page | 149532 |
| topics[0].id | https://openalex.org/T11276 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9983999729156494 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Solar Radiation and Photovoltaics |
| topics[1].id | https://openalex.org/T10468 |
| topics[1].field.id | https://openalex.org/fields/21 |
| topics[1].field.display_name | Energy |
| topics[1].score | 0.9485999941825867 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2105 |
| topics[1].subfield.display_name | Renewable Energy, Sustainability and the Environment |
| topics[1].display_name | Photovoltaic System Optimization Techniques |
| funders[0].id | https://openalex.org/F4320322472 |
| funders[0].ror | https://ror.org/00yhnba62 |
| funders[0].display_name | Qatar University |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C61797465 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7345761060714722 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1188986 |
| concepts[0].display_name | Term (time) |
| concepts[1].id | https://openalex.org/C49937458 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6298390626907349 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2599292 |
| concepts[1].display_name | Probabilistic logic |
| concepts[2].id | https://openalex.org/C69357855 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5548070669174194 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q163214 |
| concepts[2].display_name | Diffusion |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5334043502807617 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C73329638 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4828208386898041 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q527 |
| concepts[4].display_name | Sky |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.37174516916275024 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C153294291 |
| concepts[6].level | 1 |
| concepts[6].score | 0.16446924209594727 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[6].display_name | Meteorology |
| concepts[7].id | https://openalex.org/C121332964 |
| concepts[7].level | 0 |
| concepts[7].score | 0.16333425045013428 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[7].display_name | Physics |
| concepts[8].id | https://openalex.org/C1276947 |
| concepts[8].level | 1 |
| concepts[8].score | 0.15611165761947632 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q333 |
| concepts[8].display_name | Astronomy |
| concepts[9].id | https://openalex.org/C97355855 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[9].display_name | Thermodynamics |
| keywords[0].id | https://openalex.org/keywords/term |
| keywords[0].score | 0.7345761060714722 |
| keywords[0].display_name | Term (time) |
| keywords[1].id | https://openalex.org/keywords/probabilistic-logic |
| keywords[1].score | 0.6298390626907349 |
| keywords[1].display_name | Probabilistic logic |
| keywords[2].id | https://openalex.org/keywords/diffusion |
| keywords[2].score | 0.5548070669174194 |
| keywords[2].display_name | Diffusion |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5334043502807617 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/sky |
| keywords[4].score | 0.4828208386898041 |
| keywords[4].display_name | Sky |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.37174516916275024 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/meteorology |
| keywords[6].score | 0.16446924209594727 |
| keywords[6].display_name | Meteorology |
| keywords[7].id | https://openalex.org/keywords/physics |
| keywords[7].score | 0.16333425045013428 |
| keywords[7].display_name | Physics |
| keywords[8].id | https://openalex.org/keywords/astronomy |
| keywords[8].score | 0.15611165761947632 |
| keywords[8].display_name | Astronomy |
| language | en |
| locations[0].id | doi:10.1109/access.2025.3600713 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2025.3600713 |
| locations[1].id | pmh:oai:doaj.org/article:f1abc02bceb24b62bc0317221e889343 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 13, Pp 149532-149553 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/f1abc02bceb24b62bc0317221e889343 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5073490125 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7963-9461 |
| authorships[0].author.display_name | Razieh Rastgoo |
| authorships[0].countries | QA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I60342839 |
| authorships[0].affiliations[0].raw_affiliation_string | Electrical Engineering Department, Qatar University, Doha, Qatar |
| authorships[0].institutions[0].id | https://openalex.org/I60342839 |
| authorships[0].institutions[0].ror | https://ror.org/00yhnba62 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I60342839 |
| authorships[0].institutions[0].country_code | QA |
| authorships[0].institutions[0].display_name | Qatar University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Razieh Rastgoo |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Electrical Engineering Department, Qatar University, Doha, Qatar |
| authorships[1].author.id | https://openalex.org/A5048612159 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1308-1738 |
| authorships[1].author.display_name | Nima Amjady |
| authorships[1].countries | AU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I149672521 |
| authorships[1].affiliations[0].raw_affiliation_string | Center for New Energy Transition Research (CfNETR), Federation University Australia, Ballarat, Australia |
| authorships[1].institutions[0].id | https://openalex.org/I149672521 |
| authorships[1].institutions[0].ror | https://ror.org/05qbzwv83 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I149672521 |
| authorships[1].institutions[0].country_code | AU |
| authorships[1].institutions[0].display_name | Federation University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Nima Amjady |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Center for New Energy Transition Research (CfNETR), Federation University Australia, Ballarat, Australia |
| authorships[2].author.id | https://openalex.org/A5008147670 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8314-0225 |
| authorships[2].author.display_name | Rakibuzzaman Shah |
| authorships[2].countries | AU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I149672521 |
| authorships[2].affiliations[0].raw_affiliation_string | Center for New Energy Transition Research (CfNETR), Federation University Australia, Ballarat, Australia |
| authorships[2].institutions[0].id | https://openalex.org/I149672521 |
| authorships[2].institutions[0].ror | https://ror.org/05qbzwv83 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I149672521 |
| authorships[2].institutions[0].country_code | AU |
| authorships[2].institutions[0].display_name | Federation University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Rakibuzzaman Shah |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Center for New Energy Transition Research (CfNETR), Federation University Australia, Ballarat, Australia |
| authorships[3].author.id | |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4955-6889 |
| authorships[3].author.display_name | |
| authorships[3].countries | QA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I60342839 |
| authorships[3].affiliations[0].raw_affiliation_string | Electrical Engineering Department, Qatar University, Doha, Qatar |
| authorships[3].institutions[0].id | https://openalex.org/I60342839 |
| authorships[3].institutions[0].ror | https://ror.org/00yhnba62 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I60342839 |
| authorships[3].institutions[0].country_code | QA |
| authorships[3].institutions[0].display_name | Qatar University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | S. M. Muyeen |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Electrical Engineering Department, Qatar University, Doha, Qatar |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/access.2025.3600713 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Diffusion-Based Probabilistic Ultra-Short-Term Solar Power Prediction Using the Sky Image Sequences |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11276 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9983999729156494 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Solar Radiation and Photovoltaics |
| related_works | https://openalex.org/W2245358137, https://openalex.org/W2528420922, https://openalex.org/W2587830478, https://openalex.org/W3010033880, https://openalex.org/W4286825833, https://openalex.org/W2554059268, https://openalex.org/W2919291704, https://openalex.org/W2328468600, https://openalex.org/W2369577330, https://openalex.org/W4205847029 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2025.3600713 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2025.3600713 |
| primary_location.id | doi:10.1109/access.2025.3600713 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2025.3600713 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4403287203, https://openalex.org/W2751698537, https://openalex.org/W4205669462, https://openalex.org/W4394673632, https://openalex.org/W4401550462, https://openalex.org/W4221081531, https://openalex.org/W4393144515, https://openalex.org/W4393356874, https://openalex.org/W2622052728, https://openalex.org/W2763186835, https://openalex.org/W3154945144, https://openalex.org/W4312339619, https://openalex.org/W4280591845, https://openalex.org/W4406102782, https://openalex.org/W2519051700, https://openalex.org/W3180765063, https://openalex.org/W3121960127, https://openalex.org/W4379160983, https://openalex.org/W4402983091, https://openalex.org/W2343702657, https://openalex.org/W3043330044, https://openalex.org/W4396560388, https://openalex.org/W4282004200, https://openalex.org/W4410986197, https://openalex.org/W2809311023, https://openalex.org/W4290861076, https://openalex.org/W2004058364, https://openalex.org/W4386434846, https://openalex.org/W4313036097, https://openalex.org/W2921835983, https://openalex.org/W4385638885, https://openalex.org/W4402480718, https://openalex.org/W4380885011, https://openalex.org/W4366437267, https://openalex.org/W4389159969, https://openalex.org/W4388773181, https://openalex.org/W3127258696, https://openalex.org/W4402218097, https://openalex.org/W4406938298, https://openalex.org/W4387789659, https://openalex.org/W4399327652, https://openalex.org/W4400495379, https://openalex.org/W4361297243, https://openalex.org/W2296609147, https://openalex.org/W4399773800, https://openalex.org/W4311771463, https://openalex.org/W3021445785, https://openalex.org/W3214196266, https://openalex.org/W3213190881, https://openalex.org/W4408755560, https://openalex.org/W4401622094 |
| referenced_works_count | 51 |
| abstract_inverted_index.a | 16, 89, 141, 164, 181, 211, 235, 256 |
| abstract_inverted_index.64 | 239 |
| abstract_inverted_index.PV | 82, 261 |
| abstract_inverted_index.To | 80 |
| abstract_inverted_index.an | 136, 268 |
| abstract_inverted_index.as | 163, 255 |
| abstract_inverted_index.in | 259 |
| abstract_inverted_index.is | 32, 105 |
| abstract_inverted_index.it | 254 |
| abstract_inverted_index.of | 4, 22, 40, 249 |
| abstract_inverted_index.on | 96, 216, 234 |
| abstract_inverted_index.or | 58 |
| abstract_inverted_index.to | 10, 19, 102, 115, 144, 191, 201, 225 |
| abstract_inverted_index.we | 134, 209 |
| abstract_inverted_index.The | 0, 148, 178, 264 |
| abstract_inverted_index.and | 37, 50, 75, 127, 156, 171, 188, 196, 205, 219, 229, 271, 282 |
| abstract_inverted_index.due | 9 |
| abstract_inverted_index.for | 34, 68, 130, 277 |
| abstract_inverted_index.sky | 98 |
| abstract_inverted_index.the | 20, 35, 106, 112, 120, 220, 247, 250 |
| abstract_inverted_index.(PV) | 29 |
| abstract_inverted_index.four | 243 |
| abstract_inverted_index.have | 64 |
| abstract_inverted_index.into | 119 |
| abstract_inverted_index.loss | 213 |
| abstract_inverted_index.more | 48, 73 |
| abstract_inverted_index.than | 56 |
| abstract_inverted_index.that | 93 |
| abstract_inverted_index.this | 86, 103 |
| abstract_inverted_index.with | 140 |
| abstract_inverted_index.Bound | 223 |
| abstract_inverted_index.Cross | 107 |
| abstract_inverted_index.Lower | 222 |
| abstract_inverted_index.Value | 160 |
| abstract_inverted_index.about | 53 |
| abstract_inverted_index.based | 215 |
| abstract_inverted_index.block | 150 |
| abstract_inverted_index.cloud | 13, 45, 54, 70, 77, 203 |
| abstract_inverted_index.data, | 63 |
| abstract_inverted_index.first | 113, 149 |
| abstract_inverted_index.image | 99 |
| abstract_inverted_index.local | 187 |
| abstract_inverted_index.model | 114, 266 |
| abstract_inverted_index.noise | 170 |
| abstract_inverted_index.novel | 90, 212 |
| abstract_inverted_index.paper | 87 |
| abstract_inverted_index.poses | 15 |
| abstract_inverted_index.power | 6, 30, 83, 262, 274, 279 |
| abstract_inverted_index.rapid | 202 |
| abstract_inverted_index.solar | 5, 131, 273 |
| abstract_inverted_index.these | 41 |
| abstract_inverted_index.using | 242 |
| abstract_inverted_index.while | 174 |
| abstract_inverted_index.(ELBO) | 224 |
| abstract_inverted_index.(STRT) | 155 |
| abstract_inverted_index.Branch | 108 |
| abstract_inverted_index.Vision | 121 |
| abstract_inverted_index.Visual | 109 |
| abstract_inverted_index.become | 65 |
| abstract_inverted_index.block, | 180 |
| abstract_inverted_index.change | 78 |
| abstract_inverted_index.cover, | 14 |
| abstract_inverted_index.direct | 49 |
| abstract_inverted_index.energy | 24, 42 |
| abstract_inverted_index.global | 189 |
| abstract_inverted_index.models | 241 |
| abstract_inverted_index.nature | 3 |
| abstract_inverted_index.offers | 267 |
| abstract_inverted_index.refine | 145 |
| abstract_inverted_index.second | 179 |
| abstract_inverted_index.system | 280 |
| abstract_inverted_index.Central | 101 |
| abstract_inverted_index.Encoder | 139 |
| abstract_inverted_index.against | 238 |
| abstract_inverted_index.broader | 197 |
| abstract_inverted_index.capture | 192 |
| abstract_inverted_index.crucial | 33 |
| abstract_inverted_index.dataset | 237 |
| abstract_inverted_index.dynamic | 165 |
| abstract_inverted_index.enhance | 81 |
| abstract_inverted_index.feature | 125, 166 |
| abstract_inverted_index.images, | 46 |
| abstract_inverted_index.improve | 226 |
| abstract_inverted_index.metrics | 245 |
| abstract_inverted_index.on-site | 57 |
| abstract_inverted_index.patches | 118 |
| abstract_inverted_index.precise | 74 |
| abstract_inverted_index.propose | 135, 210 |
| abstract_inverted_index.rapidly | 11 |
| abstract_inverted_index.robust, | 270 |
| abstract_inverted_index.trends, | 198 |
| abstract_inverted_index.weather | 61 |
| abstract_inverted_index.Accurate | 26 |
| abstract_inverted_index.Adaptive | 158 |
| abstract_inverted_index.Evidence | 221 |
| abstract_inverted_index.Informer | 110, 122 |
| abstract_inverted_index.Ridgelet | 153 |
| abstract_inverted_index.Singular | 159 |
| abstract_inverted_index.Temporal | 138 |
| abstract_inverted_index.approach | 258 |
| abstract_inverted_index.baseline | 240 |
| abstract_inverted_index.changing | 12 |
| abstract_inverted_index.critical | 176 |
| abstract_inverted_index.enabling | 72 |
| abstract_inverted_index.function | 214 |
| abstract_inverted_index.improved | 278 |
| abstract_inverted_index.modeling | 129 |
| abstract_inverted_index.off-site | 59 |
| abstract_inverted_index.patches. | 100 |
| abstract_inverted_index.patterns | 55 |
| abstract_inverted_index.process, | 168 |
| abstract_inverted_index.proposed | 251, 265 |
| abstract_inverted_index.proposes | 88 |
| abstract_inverted_index.reducing | 169 |
| abstract_inverted_index.reliable | 38 |
| abstract_inverted_index.systems. | 25, 43 |
| abstract_inverted_index.temporal | 128, 146 |
| abstract_inverted_index.(MF-ASVD) | 162 |
| abstract_inverted_index.Attention | 183 |
| abstract_inverted_index.Extensive | 232 |
| abstract_inverted_index.Inference | 218 |
| abstract_inverted_index.Recently, | 44 |
| abstract_inverted_index.Transform | 154 |
| abstract_inverted_index.accuracy. | 231 |
| abstract_inverted_index.accurate, | 269 |
| abstract_inverted_index.analyzing | 69 |
| abstract_inverted_index.challenge | 18 |
| abstract_inverted_index.dynamics, | 71 |
| abstract_inverted_index.efficient | 36, 76 |
| abstract_inverted_index.enhancing | 199 |
| abstract_inverted_index.features. | 177 |
| abstract_inverted_index.framework | 92, 104 |
| abstract_inverted_index.improving | 124 |
| abstract_inverted_index.integrate | 116 |
| abstract_inverted_index.leverages | 94, 151 |
| abstract_inverted_index.movements | 204 |
| abstract_inverted_index.numerical | 60 |
| abstract_inverted_index.operation | 21, 39, 281 |
| abstract_inverted_index.primarily | 8 |
| abstract_inverted_index.providing | 47 |
| abstract_inverted_index.accessible | 67 |
| abstract_inverted_index.attentions | 190 |
| abstract_inverted_index.complexity | 173 |
| abstract_inverted_index.dual-block | 142 |
| abstract_inverted_index.evaluation | 244 |
| abstract_inverted_index.extraction | 126 |
| abstract_inverted_index.framework, | 252 |
| abstract_inverted_index.inherently | 1 |
| abstract_inverted_index.innovative | 137 |
| abstract_inverted_index.irradiance | 206 |
| abstract_inverted_index.mechanism, | 184 |
| abstract_inverted_index.prediction | 62, 230 |
| abstract_inverted_index.preserving | 175 |
| abstract_inverted_index.real-world | 236 |
| abstract_inverted_index.refinement | 167 |
| abstract_inverted_index.short-term | 194 |
| abstract_inverted_index.variations | 195 |
| abstract_inverted_index.(CB-ViInf), | 111 |
| abstract_inverted_index.Multi-Frame | 157 |
| abstract_inverted_index.Variational | 217 |
| abstract_inverted_index.demonstrate | 246 |
| abstract_inverted_index.evaluations | 233 |
| abstract_inverted_index.forecasting | 31, 275 |
| abstract_inverted_index.generation, | 7 |
| abstract_inverted_index.information | 52 |
| abstract_inverted_index.management. | 283 |
| abstract_inverted_index.methodology | 276 |
| abstract_inverted_index.significant | 17 |
| abstract_inverted_index.superiority | 248 |
| abstract_inverted_index.uncertainty | 227 |
| abstract_inverted_index.Furthermore, | 133 |
| abstract_inverted_index.PhotoVoltaic | 28 |
| abstract_inverted_index.adaptability | 200 |
| abstract_inverted_index.architecture | 143 |
| abstract_inverted_index.establishing | 253 |
| abstract_inverted_index.fine-grained | 193 |
| abstract_inverted_index.forecasting, | 85 |
| abstract_inverted_index.forecasting. | 132, 263 |
| abstract_inverted_index.incorporates | 186 |
| abstract_inverted_index.increasingly | 66 |
| abstract_inverted_index.predictions. | 79 |
| abstract_inverted_index.Additionally, | 208 |
| abstract_inverted_index.Decomposition | 161 |
| abstract_inverted_index.architecture, | 123 |
| abstract_inverted_index.comprehensive | 51 |
| abstract_inverted_index.computational | 172 |
| abstract_inverted_index.dependencies. | 147 |
| abstract_inverted_index.fluctuations. | 207 |
| abstract_inverted_index.probabilistic | 84 |
| abstract_inverted_index.unpredictable | 2 |
| abstract_inverted_index.Spatiotemporal | 152 |
| abstract_inverted_index.quantification | 228 |
| abstract_inverted_index.simultaneously | 185 |
| abstract_inverted_index.Spatio-Temporal | 182 |
| abstract_inverted_index.cross-attention | 95 |
| abstract_inverted_index.diffusion-based | 91 |
| abstract_inverted_index.multi-resolution | 97, 117 |
| abstract_inverted_index.solar-integrated | 23 |
| abstract_inverted_index.state-of-the-art | 257 |
| abstract_inverted_index.ultra-short-term | 27, 260 |
| abstract_inverted_index.uncertainty-aware | 272 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.6100000143051147 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.16314139 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |