A Digital Software Support Platform for Hyperthyroidism Management in South Korea: Markov Simulation Model-Based Cost-Effectiveness Analysis Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.2196/56738
Background The integration of wearable technology for heart rate monitoring offers potential advancements in managing hyperthyroidism by providing a feasible way to track thyroid function. Although digital health solutions are gaining traction in various chronic conditions, their cost-effectiveness in hyperthyroidism management requires deeper investigation. Objective This study aimed to evaluate the cost-effectiveness of a wearable or mobile-based thyroid function digital monitoring solution for hyperthyroidism management and to make a comparison with the existing standard approach within the South Korean health care context. Methods We developed a decision-analytic Markov microsimulation model to simulate the cost and effectiveness of digital monitoring in a cohort of 10,000 hypothetical hyperthyroidism patients aged 40 years. The analysis was conducted from the perspective of the health care system, with a 4.5% annual discount rate applied to costs and effectiveness and an inflation adjustment to 2022 values. Model inputs were sourced from clinical studies, publicly available datasets, and expert input, with outcomes measured in quality-adjusted life years (QALYs). Cost-effectiveness was evaluated through incremental cost-effectiveness ratios (ICERs) and net monetary benefits (NMB), with additional deterministic and probabilistic sensitivity analyses performed to address input uncertainties. Results Integrating digital monitoring yielded an additional 0.32 QALYs per patient at an incremental cost of US $3143, resulting in an ICER of US $9804.30 per QALY, significantly below the South Korean willingness-to-pay threshold of US $32,255/QALY. The digitally supported group exhibited improved rates of long-term remission (22.68%, 2268/10,000) and reduced postremission relapse (17.87%, 1787/10,000) compared to standard care (17.48%, 1748/10,000 and 26.37%, 2637/10,000, respectively). Probabilistic sensitivity analysis showed that digital intervention was the preferred cost-effective strategy in 64.4% (6440/10,000) of iterations. Subscription costs of the digital platform and the utility weight for thyroid-associated orbitopathy emerged as key factors affecting the ICER in sensitivity analyses. Conclusions The findings suggest that digital monitoring provides a cost-effective strategy for enhancing hyperthyroidism management, supporting sustained remission, and reducing relapse rates. As such, digital solutions could serve as a valuable adjunct to traditional care, with the cost-effectiveness analysis providing an economic basis for determining pricing and value-based reimbursement in health care systems. The study underscores the importance of integrating digital solutions in chronic disease management and suggests that further research should include societal costs, such as productivity, to capture economic benefits fully.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.2196/56738
- OA Status
- gold
- Cited By
- 1
- References
- 48
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412561438
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412561438Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2196/56738Digital Object Identifier
- Title
-
A Digital Software Support Platform for Hyperthyroidism Management in South Korea: Markov Simulation Model-Based Cost-Effectiveness AnalysisWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-22Full publication date if available
- Authors
-
Jung Hyun Kim, Jaeyong Shin, Man S. Kim, Jae Hoon MoonList of authors in order
- Landing page
-
https://doi.org/10.2196/56738Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.2196/56738Direct OA link when available
- Concepts
-
Medicine, Context (archaeology), Cost effectiveness, Quality-adjusted life year, Health care, Marginal cost, Cohort, Cost-effectiveness analysis, Health technology, Computer science, Risk analysis (engineering), Internal medicine, Paleontology, Economics, Economic growth, Microeconomics, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
48Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412561438 |
|---|---|
| doi | https://doi.org/10.2196/56738 |
| ids.doi | https://doi.org/10.2196/56738 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40694676 |
| ids.openalex | https://openalex.org/W4412561438 |
| fwci | 4.57511857 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | Q000379 |
| mesh[1].descriptor_ui | D003362 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | methods |
| mesh[1].descriptor_name | Cost-Benefit Analysis |
| mesh[2].qualifier_ui | Q000706 |
| mesh[2].descriptor_ui | D003362 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | statistics & numerical data |
| mesh[2].descriptor_name | Cost-Benefit Analysis |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D008390 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Markov Chains |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D056910 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Republic of Korea |
| mesh[5].qualifier_ui | Q000628 |
| mesh[5].descriptor_ui | D006980 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | therapy |
| mesh[5].descriptor_name | Hyperthyroidism |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D000328 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Adult |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D019057 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Quality-Adjusted Life Years |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D005260 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Female |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D008297 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Male |
| mesh[10].qualifier_ui | Q000592 |
| mesh[10].descriptor_ui | D012984 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | standards |
| mesh[10].descriptor_name | Software |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D008875 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Middle Aged |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D000094703 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Cost-Effectiveness Analysis |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D006801 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Humans |
| mesh[14].qualifier_ui | Q000379 |
| mesh[14].descriptor_ui | D003362 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | methods |
| mesh[14].descriptor_name | Cost-Benefit Analysis |
| mesh[15].qualifier_ui | Q000706 |
| mesh[15].descriptor_ui | D003362 |
| mesh[15].is_major_topic | True |
| mesh[15].qualifier_name | statistics & numerical data |
| mesh[15].descriptor_name | Cost-Benefit Analysis |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D008390 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Markov Chains |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D056910 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Republic of Korea |
| mesh[18].qualifier_ui | Q000628 |
| mesh[18].descriptor_ui | D006980 |
| mesh[18].is_major_topic | True |
| mesh[18].qualifier_name | therapy |
| mesh[18].descriptor_name | Hyperthyroidism |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D000328 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Adult |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D019057 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Quality-Adjusted Life Years |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D005260 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Female |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D008297 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Male |
| mesh[23].qualifier_ui | Q000592 |
| mesh[23].descriptor_ui | D012984 |
| mesh[23].is_major_topic | True |
| mesh[23].qualifier_name | standards |
| mesh[23].descriptor_name | Software |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D008875 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Middle Aged |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D000094703 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Cost-Effectiveness Analysis |
| type | article |
| title | A Digital Software Support Platform for Hyperthyroidism Management in South Korea: Markov Simulation Model-Based Cost-Effectiveness Analysis |
| biblio.issue | |
| biblio.volume | 13 |
| biblio.last_page | e56738 |
| biblio.first_page | e56738 |
| topics[0].id | https://openalex.org/T10293 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9983000159263611 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2712 |
| topics[0].subfield.display_name | Endocrinology, Diabetes and Metabolism |
| topics[0].display_name | Thyroid Disorders and Treatments |
| topics[1].id | https://openalex.org/T10745 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9955999851226807 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2705 |
| topics[1].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[1].display_name | Heart Rate Variability and Autonomic Control |
| topics[2].id | https://openalex.org/T11950 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9929999709129333 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2746 |
| topics[2].subfield.display_name | Surgery |
| topics[2].display_name | Cardiovascular Syncope and Autonomic Disorders |
| is_xpac | False |
| apc_list.value | 2850 |
| apc_list.currency | USD |
| apc_list.value_usd | 2850 |
| apc_paid.value | 2850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2850 |
| concepts[0].id | https://openalex.org/C71924100 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6705989837646484 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[0].display_name | Medicine |
| concepts[1].id | https://openalex.org/C2779343474 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5397182106971741 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[1].display_name | Context (archaeology) |
| concepts[2].id | https://openalex.org/C3019080777 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5369986891746521 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1754768 |
| concepts[2].display_name | Cost effectiveness |
| concepts[3].id | https://openalex.org/C64332521 |
| concepts[3].level | 3 |
| concepts[3].score | 0.47476673126220703 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q614165 |
| concepts[3].display_name | Quality-adjusted life year |
| concepts[4].id | https://openalex.org/C160735492 |
| concepts[4].level | 2 |
| concepts[4].score | 0.46012425422668457 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q31207 |
| concepts[4].display_name | Health care |
| concepts[5].id | https://openalex.org/C66887028 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4546331763267517 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q382444 |
| concepts[5].display_name | Marginal cost |
| concepts[6].id | https://openalex.org/C72563966 |
| concepts[6].level | 2 |
| concepts[6].score | 0.44508856534957886 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1303415 |
| concepts[6].display_name | Cohort |
| concepts[7].id | https://openalex.org/C515549039 |
| concepts[7].level | 3 |
| concepts[7].score | 0.41866743564605713 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1754768 |
| concepts[7].display_name | Cost-effectiveness analysis |
| concepts[8].id | https://openalex.org/C21333345 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4103242754936218 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1519843 |
| concepts[8].display_name | Health technology |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.34925979375839233 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C112930515 |
| concepts[10].level | 1 |
| concepts[10].score | 0.1865738034248352 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q4389547 |
| concepts[10].display_name | Risk analysis (engineering) |
| concepts[11].id | https://openalex.org/C126322002 |
| concepts[11].level | 1 |
| concepts[11].score | 0.11364880204200745 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[11].display_name | Internal medicine |
| concepts[12].id | https://openalex.org/C151730666 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[12].display_name | Paleontology |
| concepts[13].id | https://openalex.org/C162324750 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[13].display_name | Economics |
| concepts[14].id | https://openalex.org/C50522688 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[14].display_name | Economic growth |
| concepts[15].id | https://openalex.org/C175444787 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q39072 |
| concepts[15].display_name | Microeconomics |
| concepts[16].id | https://openalex.org/C86803240 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[16].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/medicine |
| keywords[0].score | 0.6705989837646484 |
| keywords[0].display_name | Medicine |
| keywords[1].id | https://openalex.org/keywords/context |
| keywords[1].score | 0.5397182106971741 |
| keywords[1].display_name | Context (archaeology) |
| keywords[2].id | https://openalex.org/keywords/cost-effectiveness |
| keywords[2].score | 0.5369986891746521 |
| keywords[2].display_name | Cost effectiveness |
| keywords[3].id | https://openalex.org/keywords/quality-adjusted-life-year |
| keywords[3].score | 0.47476673126220703 |
| keywords[3].display_name | Quality-adjusted life year |
| keywords[4].id | https://openalex.org/keywords/health-care |
| keywords[4].score | 0.46012425422668457 |
| keywords[4].display_name | Health care |
| keywords[5].id | https://openalex.org/keywords/marginal-cost |
| keywords[5].score | 0.4546331763267517 |
| keywords[5].display_name | Marginal cost |
| keywords[6].id | https://openalex.org/keywords/cohort |
| keywords[6].score | 0.44508856534957886 |
| keywords[6].display_name | Cohort |
| keywords[7].id | https://openalex.org/keywords/cost-effectiveness-analysis |
| keywords[7].score | 0.41866743564605713 |
| keywords[7].display_name | Cost-effectiveness analysis |
| keywords[8].id | https://openalex.org/keywords/health-technology |
| keywords[8].score | 0.4103242754936218 |
| keywords[8].display_name | Health technology |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.34925979375839233 |
| keywords[9].display_name | Computer science |
| keywords[10].id | https://openalex.org/keywords/risk-analysis |
| keywords[10].score | 0.1865738034248352 |
| keywords[10].display_name | Risk analysis (engineering) |
| keywords[11].id | https://openalex.org/keywords/internal-medicine |
| keywords[11].score | 0.11364880204200745 |
| keywords[11].display_name | Internal medicine |
| language | en |
| locations[0].id | doi:10.2196/56738 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764493120 |
| locations[0].source.issn | 2291-5222 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2291-5222 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | JMIR mhealth and uhealth |
| locations[0].source.host_organization | https://openalex.org/P4310320608 |
| locations[0].source.host_organization_name | JMIR Publications |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320608 |
| locations[0].source.host_organization_lineage_names | JMIR Publications |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | JMIR mHealth and uHealth |
| locations[0].landing_page_url | https://doi.org/10.2196/56738 |
| locations[1].id | pmid:40694676 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | JMIR mHealth and uHealth |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40694676 |
| locations[2].id | pmh:oai:doaj.org/article:d709771b1d7d4e968d582cbffe2dc9de |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | JMIR mHealth and uHealth, Vol 13, Pp e56738-e56738 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/d709771b1d7d4e968d582cbffe2dc9de |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:12325118 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | JMIR Mhealth Uhealth |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12325118 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5100349780 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4248-3760 |
| authorships[0].author.display_name | Jung Hyun Kim |
| authorships[0].countries | KR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I83436808 |
| authorships[0].affiliations[0].raw_affiliation_string | Division of Tourism and Wellness, Hankuk University of Foreign Studies, Yongin, Republic of Korea |
| authorships[0].institutions[0].id | https://openalex.org/I83436808 |
| authorships[0].institutions[0].ror | https://ror.org/051q2m369 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I83436808 |
| authorships[0].institutions[0].country_code | KR |
| authorships[0].institutions[0].display_name | Hankuk University of Foreign Studies |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jung Hyun Kim |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Division of Tourism and Wellness, Hankuk University of Foreign Studies, Yongin, Republic of Korea |
| authorships[1].author.id | https://openalex.org/A5000615161 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2955-6382 |
| authorships[1].author.display_name | Jaeyong Shin |
| authorships[1].countries | KR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I193775966 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I4210160791 |
| authorships[1].affiliations[1].raw_affiliation_string | Institute for Innovation in Digital Healthcare, Yonsei University Health System, Seoul, Republic of Korea |
| authorships[1].institutions[0].id | https://openalex.org/I193775966 |
| authorships[1].institutions[0].ror | https://ror.org/01wjejq96 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I193775966 |
| authorships[1].institutions[0].country_code | KR |
| authorships[1].institutions[0].display_name | Yonsei University |
| authorships[1].institutions[1].id | https://openalex.org/I4210160791 |
| authorships[1].institutions[1].ror | https://ror.org/04sze3c15 |
| authorships[1].institutions[1].type | healthcare |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210160791 |
| authorships[1].institutions[1].country_code | KR |
| authorships[1].institutions[1].display_name | Yonsei University Health System |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jaeyong Shin |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea, Institute for Innovation in Digital Healthcare, Yonsei University Health System, Seoul, Republic of Korea |
| authorships[2].author.id | https://openalex.org/A5042896940 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1507-9829 |
| authorships[2].author.display_name | Man S. Kim |
| authorships[2].countries | KR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210152252 |
| authorships[2].affiliations[0].raw_affiliation_string | Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul, Republic of Korea |
| authorships[2].institutions[0].id | https://openalex.org/I4210152252 |
| authorships[2].institutions[0].ror | https://ror.org/05x9xyq11 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I35928602, https://openalex.org/I4210152252, https://openalex.org/I4412460162, https://openalex.org/I4412460511 |
| authorships[2].institutions[0].country_code | KR |
| authorships[2].institutions[0].display_name | Kyung Hee University Hospital at Gangdong |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Man S Kim |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul, Republic of Korea |
| authorships[3].author.id | https://openalex.org/A5036240502 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6327-0575 |
| authorships[3].author.display_name | Jae Hoon Moon |
| authorships[3].countries | KR |
| authorships[3].affiliations[0].raw_affiliation_string | THYROSCOPE INC, Ulsan, Republic of Korea |
| authorships[3].affiliations[1].raw_affiliation_string | THYROSCOPE INC, Ulsan, Republic of Korea. |
| authorships[3].affiliations[2].institution_ids | https://openalex.org/I2803058125 |
| authorships[3].affiliations[2].raw_affiliation_string | Center for Artificial Intelligence in Healthcare, Seoul National University Bundang Hospital, Seongnam, Republic of Korea |
| authorships[3].institutions[0].id | https://openalex.org/I2803058125 |
| authorships[3].institutions[0].ror | https://ror.org/00cb3km46 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I2802835388, https://openalex.org/I2803058125 |
| authorships[3].institutions[0].country_code | KR |
| authorships[3].institutions[0].display_name | Seoul National University Bundang Hospital |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Jae Hoon Moon |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Center for Artificial Intelligence in Healthcare, Seoul National University Bundang Hospital, Seongnam, Republic of Korea, THYROSCOPE INC, Ulsan, Republic of Korea, THYROSCOPE INC, Ulsan, Republic of Korea. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.2196/56738 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Digital Software Support Platform for Hyperthyroidism Management in South Korea: Markov Simulation Model-Based Cost-Effectiveness Analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10293 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9983000159263611 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2712 |
| primary_topic.subfield.display_name | Endocrinology, Diabetes and Metabolism |
| primary_topic.display_name | Thyroid Disorders and Treatments |
| related_works | https://openalex.org/W2001644930, https://openalex.org/W2005049219, https://openalex.org/W2159627298, https://openalex.org/W2066175645, https://openalex.org/W2041145027, https://openalex.org/W2187740012, https://openalex.org/W4401074323, https://openalex.org/W2057711323, https://openalex.org/W1967727682, https://openalex.org/W3007581650 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.2196/56738 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764493120 |
| best_oa_location.source.issn | 2291-5222 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2291-5222 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | JMIR mhealth and uhealth |
| best_oa_location.source.host_organization | https://openalex.org/P4310320608 |
| best_oa_location.source.host_organization_name | JMIR Publications |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320608 |
| best_oa_location.source.host_organization_lineage_names | JMIR Publications |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | JMIR mHealth and uHealth |
| best_oa_location.landing_page_url | https://doi.org/10.2196/56738 |
| primary_location.id | doi:10.2196/56738 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764493120 |
| primary_location.source.issn | 2291-5222 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2291-5222 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | JMIR mhealth and uhealth |
| primary_location.source.host_organization | https://openalex.org/P4310320608 |
| primary_location.source.host_organization_name | JMIR Publications |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320608 |
| primary_location.source.host_organization_lineage_names | JMIR Publications |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | JMIR mHealth and uHealth |
| primary_location.landing_page_url | https://doi.org/10.2196/56738 |
| publication_date | 2025-07-22 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4246035014, https://openalex.org/W4383999050, https://openalex.org/W2059353211, https://openalex.org/W1988681682, https://openalex.org/W271515203, https://openalex.org/W2595757535, https://openalex.org/W2530450109, https://openalex.org/W2809133573, https://openalex.org/W3205858540, https://openalex.org/W2154191187, https://openalex.org/W2046971812, https://openalex.org/W2152268628, https://openalex.org/W2156586495, https://openalex.org/W1983002130, https://openalex.org/W3114687967, https://openalex.org/W2052304058, https://openalex.org/W2328248012, https://openalex.org/W2133425641, https://openalex.org/W2804670289, https://openalex.org/W2108800970, https://openalex.org/W3128340666, https://openalex.org/W3123248975, https://openalex.org/W2026157838, https://openalex.org/W2167189503, https://openalex.org/W2062359310, https://openalex.org/W2341326607, https://openalex.org/W2010164057, https://openalex.org/W1985264354, https://openalex.org/W2502386956, https://openalex.org/W1537598136, https://openalex.org/W2054613048, https://openalex.org/W2119440126, https://openalex.org/W4205238128, https://openalex.org/W4210909635, https://openalex.org/W4283214110, https://openalex.org/W2510464317, https://openalex.org/W2924420409, https://openalex.org/W2120811371, https://openalex.org/W2056954835, https://openalex.org/W2049190141, https://openalex.org/W2734621493, https://openalex.org/W2953103800, https://openalex.org/W2884675353, https://openalex.org/W3138107713, https://openalex.org/W3130439095, https://openalex.org/W3186569591, https://openalex.org/W3003343618, https://openalex.org/W4226027230 |
| referenced_works_count | 48 |
| abstract_inverted_index.a | 19, 54, 69, 86, 101, 124, 300, 321 |
| abstract_inverted_index.40 | 109 |
| abstract_inverted_index.As | 314 |
| abstract_inverted_index.US | 203, 210, 222 |
| abstract_inverted_index.We | 84 |
| abstract_inverted_index.an | 135, 192, 199, 207, 332 |
| abstract_inverted_index.as | 283, 320, 368 |
| abstract_inverted_index.at | 198 |
| abstract_inverted_index.by | 17 |
| abstract_inverted_index.in | 14, 33, 39, 100, 157, 206, 264, 289, 341, 354 |
| abstract_inverted_index.of | 4, 53, 97, 103, 118, 202, 209, 221, 231, 267, 271, 350 |
| abstract_inverted_index.or | 56 |
| abstract_inverted_index.to | 22, 49, 67, 91, 130, 138, 183, 243, 324, 370 |
| abstract_inverted_index.The | 2, 111, 224, 293, 345 |
| abstract_inverted_index.and | 66, 95, 132, 134, 151, 170, 178, 236, 248, 275, 310, 338, 358 |
| abstract_inverted_index.are | 30 |
| abstract_inverted_index.for | 7, 63, 279, 303, 335 |
| abstract_inverted_index.key | 284 |
| abstract_inverted_index.net | 171 |
| abstract_inverted_index.per | 196, 212 |
| abstract_inverted_index.the | 51, 72, 77, 93, 116, 119, 216, 260, 272, 276, 287, 328, 348 |
| abstract_inverted_index.was | 113, 163, 259 |
| abstract_inverted_index.way | 21 |
| abstract_inverted_index.0.32 | 194 |
| abstract_inverted_index.2022 | 139 |
| abstract_inverted_index.4.5% | 125 |
| abstract_inverted_index.ICER | 208, 288 |
| abstract_inverted_index.This | 46 |
| abstract_inverted_index.aged | 108 |
| abstract_inverted_index.care | 81, 121, 245, 343 |
| abstract_inverted_index.cost | 94, 201 |
| abstract_inverted_index.from | 115, 145 |
| abstract_inverted_index.life | 159 |
| abstract_inverted_index.make | 68 |
| abstract_inverted_index.rate | 9, 128 |
| abstract_inverted_index.such | 367 |
| abstract_inverted_index.that | 256, 296, 360 |
| abstract_inverted_index.were | 143 |
| abstract_inverted_index.with | 71, 123, 154, 175, 327 |
| abstract_inverted_index.64.4% | 265 |
| abstract_inverted_index.Model | 141 |
| abstract_inverted_index.QALY, | 213 |
| abstract_inverted_index.QALYs | 195 |
| abstract_inverted_index.South | 78, 217 |
| abstract_inverted_index.aimed | 48 |
| abstract_inverted_index.basis | 334 |
| abstract_inverted_index.below | 215 |
| abstract_inverted_index.care, | 326 |
| abstract_inverted_index.costs | 131, 270 |
| abstract_inverted_index.could | 318 |
| abstract_inverted_index.group | 227 |
| abstract_inverted_index.heart | 8 |
| abstract_inverted_index.input | 185 |
| abstract_inverted_index.model | 90 |
| abstract_inverted_index.rates | 230 |
| abstract_inverted_index.serve | 319 |
| abstract_inverted_index.study | 47, 346 |
| abstract_inverted_index.such, | 315 |
| abstract_inverted_index.their | 37 |
| abstract_inverted_index.track | 23 |
| abstract_inverted_index.years | 160 |
| abstract_inverted_index.$3143, | 204 |
| abstract_inverted_index.(NMB), | 174 |
| abstract_inverted_index.10,000 | 104 |
| abstract_inverted_index.Korean | 79, 218 |
| abstract_inverted_index.Markov | 88 |
| abstract_inverted_index.annual | 126 |
| abstract_inverted_index.cohort | 102 |
| abstract_inverted_index.costs, | 366 |
| abstract_inverted_index.deeper | 43 |
| abstract_inverted_index.expert | 152 |
| abstract_inverted_index.fully. | 374 |
| abstract_inverted_index.health | 28, 80, 120, 342 |
| abstract_inverted_index.input, | 153 |
| abstract_inverted_index.inputs | 142 |
| abstract_inverted_index.offers | 11 |
| abstract_inverted_index.rates. | 313 |
| abstract_inverted_index.ratios | 168 |
| abstract_inverted_index.should | 363 |
| abstract_inverted_index.showed | 255 |
| abstract_inverted_index.weight | 278 |
| abstract_inverted_index.within | 76 |
| abstract_inverted_index.years. | 110 |
| abstract_inverted_index.(ICERs) | 169 |
| abstract_inverted_index.26.37%, | 249 |
| abstract_inverted_index.Methods | 83 |
| abstract_inverted_index.Results | 187 |
| abstract_inverted_index.address | 184 |
| abstract_inverted_index.adjunct | 323 |
| abstract_inverted_index.applied | 129 |
| abstract_inverted_index.capture | 371 |
| abstract_inverted_index.chronic | 35, 355 |
| abstract_inverted_index.digital | 27, 60, 98, 189, 257, 273, 297, 316, 352 |
| abstract_inverted_index.disease | 356 |
| abstract_inverted_index.emerged | 282 |
| abstract_inverted_index.factors | 285 |
| abstract_inverted_index.further | 361 |
| abstract_inverted_index.gaining | 31 |
| abstract_inverted_index.include | 364 |
| abstract_inverted_index.patient | 197 |
| abstract_inverted_index.pricing | 337 |
| abstract_inverted_index.reduced | 237 |
| abstract_inverted_index.relapse | 239, 312 |
| abstract_inverted_index.sourced | 144 |
| abstract_inverted_index.suggest | 295 |
| abstract_inverted_index.system, | 122 |
| abstract_inverted_index.through | 165 |
| abstract_inverted_index.thyroid | 24, 58 |
| abstract_inverted_index.utility | 277 |
| abstract_inverted_index.values. | 140 |
| abstract_inverted_index.various | 34 |
| abstract_inverted_index.yielded | 191 |
| abstract_inverted_index.$9804.30 | 211 |
| abstract_inverted_index.(17.48%, | 246 |
| abstract_inverted_index.(17.87%, | 240 |
| abstract_inverted_index.(22.68%, | 234 |
| abstract_inverted_index.(QALYs). | 161 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Although | 26 |
| abstract_inverted_index.analyses | 181 |
| abstract_inverted_index.analysis | 112, 254, 330 |
| abstract_inverted_index.approach | 75 |
| abstract_inverted_index.benefits | 173, 373 |
| abstract_inverted_index.clinical | 146 |
| abstract_inverted_index.compared | 242 |
| abstract_inverted_index.context. | 82 |
| abstract_inverted_index.discount | 127 |
| abstract_inverted_index.economic | 333, 372 |
| abstract_inverted_index.evaluate | 50 |
| abstract_inverted_index.existing | 73 |
| abstract_inverted_index.feasible | 20 |
| abstract_inverted_index.findings | 294 |
| abstract_inverted_index.function | 59 |
| abstract_inverted_index.improved | 229 |
| abstract_inverted_index.managing | 15 |
| abstract_inverted_index.measured | 156 |
| abstract_inverted_index.monetary | 172 |
| abstract_inverted_index.outcomes | 155 |
| abstract_inverted_index.patients | 107 |
| abstract_inverted_index.platform | 274 |
| abstract_inverted_index.provides | 299 |
| abstract_inverted_index.publicly | 148 |
| abstract_inverted_index.reducing | 311 |
| abstract_inverted_index.requires | 42 |
| abstract_inverted_index.research | 362 |
| abstract_inverted_index.simulate | 92 |
| abstract_inverted_index.societal | 365 |
| abstract_inverted_index.solution | 62 |
| abstract_inverted_index.standard | 74, 244 |
| abstract_inverted_index.strategy | 263, 302 |
| abstract_inverted_index.studies, | 147 |
| abstract_inverted_index.suggests | 359 |
| abstract_inverted_index.systems. | 344 |
| abstract_inverted_index.traction | 32 |
| abstract_inverted_index.valuable | 322 |
| abstract_inverted_index.wearable | 5, 55 |
| abstract_inverted_index.Objective | 45 |
| abstract_inverted_index.affecting | 286 |
| abstract_inverted_index.analyses. | 291 |
| abstract_inverted_index.available | 149 |
| abstract_inverted_index.conducted | 114 |
| abstract_inverted_index.datasets, | 150 |
| abstract_inverted_index.developed | 85 |
| abstract_inverted_index.digitally | 225 |
| abstract_inverted_index.enhancing | 304 |
| abstract_inverted_index.evaluated | 164 |
| abstract_inverted_index.exhibited | 228 |
| abstract_inverted_index.function. | 25 |
| abstract_inverted_index.inflation | 136 |
| abstract_inverted_index.long-term | 232 |
| abstract_inverted_index.performed | 182 |
| abstract_inverted_index.potential | 12 |
| abstract_inverted_index.preferred | 261 |
| abstract_inverted_index.providing | 18, 331 |
| abstract_inverted_index.remission | 233 |
| abstract_inverted_index.resulting | 205 |
| abstract_inverted_index.solutions | 29, 317, 353 |
| abstract_inverted_index.supported | 226 |
| abstract_inverted_index.sustained | 308 |
| abstract_inverted_index.threshold | 220 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.additional | 176, 193 |
| abstract_inverted_index.adjustment | 137 |
| abstract_inverted_index.comparison | 70 |
| abstract_inverted_index.importance | 349 |
| abstract_inverted_index.management | 41, 65, 357 |
| abstract_inverted_index.monitoring | 10, 61, 99, 190, 298 |
| abstract_inverted_index.remission, | 309 |
| abstract_inverted_index.supporting | 307 |
| abstract_inverted_index.technology | 6 |
| abstract_inverted_index.1748/10,000 | 247 |
| abstract_inverted_index.Conclusions | 292 |
| abstract_inverted_index.Integrating | 188 |
| abstract_inverted_index.conditions, | 36 |
| abstract_inverted_index.determining | 336 |
| abstract_inverted_index.incremental | 166, 200 |
| abstract_inverted_index.integrating | 351 |
| abstract_inverted_index.integration | 3 |
| abstract_inverted_index.iterations. | 268 |
| abstract_inverted_index.management, | 306 |
| abstract_inverted_index.orbitopathy | 281 |
| abstract_inverted_index.perspective | 117 |
| abstract_inverted_index.sensitivity | 180, 253, 290 |
| abstract_inverted_index.traditional | 325 |
| abstract_inverted_index.underscores | 347 |
| abstract_inverted_index.value-based | 339 |
| abstract_inverted_index.1787/10,000) | 241 |
| abstract_inverted_index.2268/10,000) | 235 |
| abstract_inverted_index.2637/10,000, | 250 |
| abstract_inverted_index.Subscription | 269 |
| abstract_inverted_index.advancements | 13 |
| abstract_inverted_index.hypothetical | 105 |
| abstract_inverted_index.intervention | 258 |
| abstract_inverted_index.mobile-based | 57 |
| abstract_inverted_index.$32,255/QALY. | 223 |
| abstract_inverted_index.(6440/10,000) | 266 |
| abstract_inverted_index.Probabilistic | 252 |
| abstract_inverted_index.deterministic | 177 |
| abstract_inverted_index.effectiveness | 96, 133 |
| abstract_inverted_index.postremission | 238 |
| abstract_inverted_index.probabilistic | 179 |
| abstract_inverted_index.productivity, | 369 |
| abstract_inverted_index.reimbursement | 340 |
| abstract_inverted_index.significantly | 214 |
| abstract_inverted_index.cost-effective | 262, 301 |
| abstract_inverted_index.investigation. | 44 |
| abstract_inverted_index.respectively). | 251 |
| abstract_inverted_index.uncertainties. | 186 |
| abstract_inverted_index.hyperthyroidism | 16, 40, 64, 106, 305 |
| abstract_inverted_index.microsimulation | 89 |
| abstract_inverted_index.quality-adjusted | 158 |
| abstract_inverted_index.decision-analytic | 87 |
| abstract_inverted_index.Cost-effectiveness | 162 |
| abstract_inverted_index.cost-effectiveness | 38, 52, 167, 329 |
| abstract_inverted_index.thyroid-associated | 280 |
| abstract_inverted_index.willingness-to-pay | 219 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5036240502 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I2803058125 |
| citation_normalized_percentile.value | 0.89374166 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |