A Distributed Approach of Big Data Mining for Financial Fraud Detection in a Supply Chain Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.32604/cmc.2020.09834
Supply Chain Finance (SCF) is important for improving the effectiveness of supply chain capital operations and reducing the overall management cost of a supply chain. In recent years, with the deep integration of supply chain and Internet, Big Data, Artificial Intelligence, Internet of Things, Blockchain, etc., the efficiency of supply chain financial services can be greatly promoted through building more customized risk pricing models and conducting more rigorous investment decision-making processes. However, with the rapid development of new technologies, the SCF data has been massively increased and new financial fraud behaviors or patterns are becoming more covertly scattered among normal ones. The lack of enough capability to handle the big data volumes and mitigate the financial frauds may lead to huge losses in supply chains. In this article, a distributed approach of big data mining is proposed for financial fraud detection in a supply chain, which implements the distributed deep learning model of Convolutional Neural Network (CNN) on big data infrastructure of Apache Spark and Hadoop to speed up the processing of the large dataset in parallel and reduce the processing time significantly. By training and testing on the continually updated SCF dataset, the approach can intelligently and automatically classify the massive data samples and discover the fraudulent financing behaviors, so as to enhance the financial fraud detection with high precision and recall rates, and reduce the losses of frauds in a supply chain.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.32604/cmc.2020.09834
- OA Status
- diamond
- Cited By
- 50
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3034448078
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3034448078Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.32604/cmc.2020.09834Digital Object Identifier
- Title
-
A Distributed Approach of Big Data Mining for Financial Fraud Detection in a Supply ChainWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-01Full publication date if available
- Authors
-
Hangjun Zhou, Guang Sun, Sha Fu, Xiaoping Fan, Wangdong Jiang, Shuting Hu, Lingjiao LiList of authors in order
- Landing page
-
https://doi.org/10.32604/cmc.2020.09834Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.32604/cmc.2020.09834Direct OA link when available
- Concepts
-
Supply chain, Big data, Computer science, SPARK (programming language), Finance, Financial services, Convolutional neural network, Supply chain management, Business, Artificial intelligence, Data mining, Marketing, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
50Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 10, 2024: 19, 2023: 10, 2022: 7, 2021: 3Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3034448078 |
|---|---|
| doi | https://doi.org/10.32604/cmc.2020.09834 |
| ids.doi | https://doi.org/10.32604/cmc.2020.09834 |
| ids.mag | 3034448078 |
| ids.openalex | https://openalex.org/W3034448078 |
| fwci | 3.08405052 |
| type | article |
| title | A Distributed Approach of Big Data Mining for Financial Fraud Detection in a Supply Chain |
| biblio.issue | 2 |
| biblio.volume | 64 |
| biblio.last_page | 1105 |
| biblio.first_page | 1091 |
| topics[0].id | https://openalex.org/T11652 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9491000175476074 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Imbalanced Data Classification Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C108713360 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8230413198471069 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1824206 |
| concepts[0].display_name | Supply chain |
| concepts[1].id | https://openalex.org/C75684735 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7910274863243103 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q858810 |
| concepts[1].display_name | Big data |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5772777795791626 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2781215313 |
| concepts[3].level | 2 |
| concepts[3].score | 0.516484260559082 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3493345 |
| concepts[3].display_name | SPARK (programming language) |
| concepts[4].id | https://openalex.org/C10138342 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5005128383636475 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q43015 |
| concepts[4].display_name | Finance |
| concepts[5].id | https://openalex.org/C139043278 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4566078186035156 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q837171 |
| concepts[5].display_name | Financial services |
| concepts[6].id | https://openalex.org/C81363708 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4534010589122772 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[6].display_name | Convolutional neural network |
| concepts[7].id | https://openalex.org/C44104985 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4477267563343048 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q492886 |
| concepts[7].display_name | Supply chain management |
| concepts[8].id | https://openalex.org/C144133560 |
| concepts[8].level | 0 |
| concepts[8].score | 0.27348190546035767 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[8].display_name | Business |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.25896912813186646 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C124101348 |
| concepts[10].level | 1 |
| concepts[10].score | 0.20942816138267517 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[10].display_name | Data mining |
| concepts[11].id | https://openalex.org/C162853370 |
| concepts[11].level | 1 |
| concepts[11].score | 0.10593318939208984 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q39809 |
| concepts[11].display_name | Marketing |
| concepts[12].id | https://openalex.org/C199360897 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[12].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/supply-chain |
| keywords[0].score | 0.8230413198471069 |
| keywords[0].display_name | Supply chain |
| keywords[1].id | https://openalex.org/keywords/big-data |
| keywords[1].score | 0.7910274863243103 |
| keywords[1].display_name | Big data |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5772777795791626 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/spark |
| keywords[3].score | 0.516484260559082 |
| keywords[3].display_name | SPARK (programming language) |
| keywords[4].id | https://openalex.org/keywords/finance |
| keywords[4].score | 0.5005128383636475 |
| keywords[4].display_name | Finance |
| keywords[5].id | https://openalex.org/keywords/financial-services |
| keywords[5].score | 0.4566078186035156 |
| keywords[5].display_name | Financial services |
| keywords[6].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[6].score | 0.4534010589122772 |
| keywords[6].display_name | Convolutional neural network |
| keywords[7].id | https://openalex.org/keywords/supply-chain-management |
| keywords[7].score | 0.4477267563343048 |
| keywords[7].display_name | Supply chain management |
| keywords[8].id | https://openalex.org/keywords/business |
| keywords[8].score | 0.27348190546035767 |
| keywords[8].display_name | Business |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.25896912813186646 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/data-mining |
| keywords[10].score | 0.20942816138267517 |
| keywords[10].display_name | Data mining |
| keywords[11].id | https://openalex.org/keywords/marketing |
| keywords[11].score | 0.10593318939208984 |
| keywords[11].display_name | Marketing |
| language | en |
| locations[0].id | doi:10.32604/cmc.2020.09834 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210191605 |
| locations[0].source.issn | 1546-2218, 1546-2226 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1546-2218 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Computers, materials & continua/Computers, materials & continua (Print) |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Computers, Materials & Continua |
| locations[0].landing_page_url | https://doi.org/10.32604/cmc.2020.09834 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100649868 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Hangjun Zhou |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hangjun Zhou |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5110572084 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1041-0145 |
| authorships[1].author.display_name | Guang Sun |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Guang Sun |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101544731 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8720-9162 |
| authorships[2].author.display_name | Sha Fu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sha Fu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5024785057 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0172-4070 |
| authorships[3].author.display_name | Xiaoping Fan |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xiaoping Fan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5083012150 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Wangdong Jiang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wangdong Jiang |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5089920351 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-1813-4309 |
| authorships[5].author.display_name | Shuting Hu |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Shuting Hu |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5102363495 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Lingjiao Li |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Lingjiao Li |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.32604/cmc.2020.09834 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Distributed Approach of Big Data Mining for Financial Fraud Detection in a Supply Chain |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11652 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9491000175476074 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Imbalanced Data Classification Techniques |
| related_works | https://openalex.org/W2766461310, https://openalex.org/W4247566972, https://openalex.org/W3202731209, https://openalex.org/W4240326769, https://openalex.org/W3211874991, https://openalex.org/W3012518171, https://openalex.org/W2906268655, https://openalex.org/W4241605045, https://openalex.org/W2983500849, https://openalex.org/W3024999678 |
| cited_by_count | 50 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 10 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 19 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 10 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 7 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 3 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.32604/cmc.2020.09834 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210191605 |
| best_oa_location.source.issn | 1546-2218, 1546-2226 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1546-2218 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Computers, materials & continua/Computers, materials & continua (Print) |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Computers, Materials & Continua |
| best_oa_location.landing_page_url | https://doi.org/10.32604/cmc.2020.09834 |
| primary_location.id | doi:10.32604/cmc.2020.09834 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210191605 |
| primary_location.source.issn | 1546-2218, 1546-2226 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1546-2218 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Computers, materials & continua/Computers, materials & continua (Print) |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Computers, Materials & Continua |
| primary_location.landing_page_url | https://doi.org/10.32604/cmc.2020.09834 |
| publication_date | 2020-01-01 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 22, 128, 142, 231 |
| abstract_inverted_index.By | 183 |
| abstract_inverted_index.In | 25, 125 |
| abstract_inverted_index.as | 211 |
| abstract_inverted_index.be | 54 |
| abstract_inverted_index.in | 122, 141, 175, 230 |
| abstract_inverted_index.is | 4, 135 |
| abstract_inverted_index.of | 10, 21, 32, 42, 48, 76, 103, 131, 152, 161, 171, 228 |
| abstract_inverted_index.on | 157, 187 |
| abstract_inverted_index.or | 91 |
| abstract_inverted_index.so | 210 |
| abstract_inverted_index.to | 106, 119, 166, 212 |
| abstract_inverted_index.up | 168 |
| abstract_inverted_index.Big | 37 |
| abstract_inverted_index.SCF | 80, 191 |
| abstract_inverted_index.The | 101 |
| abstract_inverted_index.and | 15, 35, 64, 86, 112, 164, 177, 185, 197, 204, 221, 224 |
| abstract_inverted_index.are | 93 |
| abstract_inverted_index.big | 109, 132, 158 |
| abstract_inverted_index.can | 53, 195 |
| abstract_inverted_index.for | 6, 137 |
| abstract_inverted_index.has | 82 |
| abstract_inverted_index.may | 117 |
| abstract_inverted_index.new | 77, 87 |
| abstract_inverted_index.the | 8, 17, 29, 46, 73, 79, 108, 114, 147, 169, 172, 179, 188, 193, 200, 206, 214, 226 |
| abstract_inverted_index.been | 83 |
| abstract_inverted_index.cost | 20 |
| abstract_inverted_index.data | 81, 110, 133, 159, 202 |
| abstract_inverted_index.deep | 30, 149 |
| abstract_inverted_index.high | 219 |
| abstract_inverted_index.huge | 120 |
| abstract_inverted_index.lack | 102 |
| abstract_inverted_index.lead | 118 |
| abstract_inverted_index.more | 59, 66, 95 |
| abstract_inverted_index.risk | 61 |
| abstract_inverted_index.this | 126 |
| abstract_inverted_index.time | 181 |
| abstract_inverted_index.with | 28, 72, 218 |
| abstract_inverted_index.(CNN) | 156 |
| abstract_inverted_index.(SCF) | 3 |
| abstract_inverted_index.Chain | 1 |
| abstract_inverted_index.Data, | 38 |
| abstract_inverted_index.Spark | 163 |
| abstract_inverted_index.among | 98 |
| abstract_inverted_index.chain | 12, 34, 50 |
| abstract_inverted_index.etc., | 45 |
| abstract_inverted_index.fraud | 89, 139, 216 |
| abstract_inverted_index.large | 173 |
| abstract_inverted_index.model | 151 |
| abstract_inverted_index.ones. | 100 |
| abstract_inverted_index.rapid | 74 |
| abstract_inverted_index.speed | 167 |
| abstract_inverted_index.which | 145 |
| abstract_inverted_index.Apache | 162 |
| abstract_inverted_index.Hadoop | 165 |
| abstract_inverted_index.Neural | 154 |
| abstract_inverted_index.Supply | 0 |
| abstract_inverted_index.chain, | 144 |
| abstract_inverted_index.chain. | 24, 233 |
| abstract_inverted_index.enough | 104 |
| abstract_inverted_index.frauds | 116, 229 |
| abstract_inverted_index.handle | 107 |
| abstract_inverted_index.losses | 121, 227 |
| abstract_inverted_index.mining | 134 |
| abstract_inverted_index.models | 63 |
| abstract_inverted_index.normal | 99 |
| abstract_inverted_index.rates, | 223 |
| abstract_inverted_index.recall | 222 |
| abstract_inverted_index.recent | 26 |
| abstract_inverted_index.reduce | 178, 225 |
| abstract_inverted_index.supply | 11, 23, 33, 49, 123, 143, 232 |
| abstract_inverted_index.years, | 27 |
| abstract_inverted_index.Finance | 2 |
| abstract_inverted_index.Network | 155 |
| abstract_inverted_index.Things, | 43 |
| abstract_inverted_index.capital | 13 |
| abstract_inverted_index.chains. | 124 |
| abstract_inverted_index.dataset | 174 |
| abstract_inverted_index.enhance | 213 |
| abstract_inverted_index.greatly | 55 |
| abstract_inverted_index.massive | 201 |
| abstract_inverted_index.overall | 18 |
| abstract_inverted_index.pricing | 62 |
| abstract_inverted_index.samples | 203 |
| abstract_inverted_index.testing | 186 |
| abstract_inverted_index.through | 57 |
| abstract_inverted_index.updated | 190 |
| abstract_inverted_index.volumes | 111 |
| abstract_inverted_index.However, | 71 |
| abstract_inverted_index.Internet | 41 |
| abstract_inverted_index.approach | 130, 194 |
| abstract_inverted_index.article, | 127 |
| abstract_inverted_index.becoming | 94 |
| abstract_inverted_index.building | 58 |
| abstract_inverted_index.classify | 199 |
| abstract_inverted_index.covertly | 96 |
| abstract_inverted_index.dataset, | 192 |
| abstract_inverted_index.discover | 205 |
| abstract_inverted_index.learning | 150 |
| abstract_inverted_index.mitigate | 113 |
| abstract_inverted_index.parallel | 176 |
| abstract_inverted_index.patterns | 92 |
| abstract_inverted_index.promoted | 56 |
| abstract_inverted_index.proposed | 136 |
| abstract_inverted_index.reducing | 16 |
| abstract_inverted_index.rigorous | 67 |
| abstract_inverted_index.services | 52 |
| abstract_inverted_index.training | 184 |
| abstract_inverted_index.Internet, | 36 |
| abstract_inverted_index.behaviors | 90 |
| abstract_inverted_index.detection | 140, 217 |
| abstract_inverted_index.financial | 51, 88, 115, 138, 215 |
| abstract_inverted_index.financing | 208 |
| abstract_inverted_index.important | 5 |
| abstract_inverted_index.improving | 7 |
| abstract_inverted_index.increased | 85 |
| abstract_inverted_index.massively | 84 |
| abstract_inverted_index.precision | 220 |
| abstract_inverted_index.scattered | 97 |
| abstract_inverted_index.Artificial | 39 |
| abstract_inverted_index.behaviors, | 209 |
| abstract_inverted_index.capability | 105 |
| abstract_inverted_index.conducting | 65 |
| abstract_inverted_index.customized | 60 |
| abstract_inverted_index.efficiency | 47 |
| abstract_inverted_index.fraudulent | 207 |
| abstract_inverted_index.implements | 146 |
| abstract_inverted_index.investment | 68 |
| abstract_inverted_index.management | 19 |
| abstract_inverted_index.operations | 14 |
| abstract_inverted_index.processes. | 70 |
| abstract_inverted_index.processing | 170, 180 |
| abstract_inverted_index.Blockchain, | 44 |
| abstract_inverted_index.continually | 189 |
| abstract_inverted_index.development | 75 |
| abstract_inverted_index.distributed | 129, 148 |
| abstract_inverted_index.integration | 31 |
| abstract_inverted_index.Convolutional | 153 |
| abstract_inverted_index.Intelligence, | 40 |
| abstract_inverted_index.automatically | 198 |
| abstract_inverted_index.effectiveness | 9 |
| abstract_inverted_index.intelligently | 196 |
| abstract_inverted_index.technologies, | 78 |
| abstract_inverted_index.infrastructure | 160 |
| abstract_inverted_index.significantly. | 182 |
| abstract_inverted_index.decision-making | 69 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.92498108 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |