A dynamic ensemble approach to robust classification in the presence of missing data Article Swipe
Bryan Conroy
,
Larry J. Eshelman
,
Cristhian Potes
,
Minnan Xu-Wilson
·
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.1007/s10994-015-5530-z
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.1007/s10994-015-5530-z
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s10994-015-5530-z
- https://link.springer.com/content/pdf/10.1007/s10994-015-5530-z.pdf
- OA Status
- bronze
- Cited By
- 46
- References
- 28
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2192009965
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2192009965Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s10994-015-5530-zDigital Object Identifier
- Title
-
A dynamic ensemble approach to robust classification in the presence of missing dataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2015Year of publication
- Publication date
-
2015-10-20Full publication date if available
- Authors
-
Bryan Conroy, Larry J. Eshelman, Cristhian Potes, Minnan Xu-WilsonList of authors in order
- Landing page
-
https://doi.org/10.1007/s10994-015-5530-zPublisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s10994-015-5530-z.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s10994-015-5530-z.pdfDirect OA link when available
- Concepts
-
Missing data, Imputation (statistics), Computer science, Weighting, Artificial intelligence, Classifier (UML), Discriminative model, Data mining, Pattern recognition (psychology), Machine learning, Population, AdaBoost, Sociology, Medicine, Demography, RadiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
46Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 4, 2023: 3, 2022: 10, 2021: 8Per-year citation counts (last 5 years)
- References (count)
-
28Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2192009965 |
|---|---|
| doi | https://doi.org/10.1007/s10994-015-5530-z |
| ids.doi | https://doi.org/10.1007/s10994-015-5530-z |
| ids.mag | 2192009965 |
| ids.openalex | https://openalex.org/W2192009965 |
| fwci | 2.62203899 |
| type | article |
| title | A dynamic ensemble approach to robust classification in the presence of missing data |
| biblio.issue | 3 |
| biblio.volume | 102 |
| biblio.last_page | 463 |
| biblio.first_page | 443 |
| topics[0].id | https://openalex.org/T10218 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9900000095367432 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2713 |
| topics[0].subfield.display_name | Epidemiology |
| topics[0].display_name | Sepsis Diagnosis and Treatment |
| topics[1].id | https://openalex.org/T13702 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9847000241279602 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning in Healthcare |
| topics[2].id | https://openalex.org/T11700 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.970300018787384 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2746 |
| topics[2].subfield.display_name | Surgery |
| topics[2].display_name | Hemodynamic Monitoring and Therapy |
| is_xpac | False |
| apc_list.value | 2390 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2990 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C9357733 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8589601516723633 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6878417 |
| concepts[0].display_name | Missing data |
| concepts[1].id | https://openalex.org/C58041806 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7538101673126221 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1660484 |
| concepts[1].display_name | Imputation (statistics) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6629669666290283 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C183115368 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6072483658790588 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q856577 |
| concepts[3].display_name | Weighting |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5990009903907776 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C95623464 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5834717750549316 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[5].display_name | Classifier (UML) |
| concepts[6].id | https://openalex.org/C97931131 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5485265851020813 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5282087 |
| concepts[6].display_name | Discriminative model |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5024874210357666 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4720227122306824 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.46270325779914856 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C2908647359 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4378505051136017 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[10].display_name | Population |
| concepts[11].id | https://openalex.org/C141404830 |
| concepts[11].level | 3 |
| concepts[11].score | 0.433095246553421 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2823869 |
| concepts[11].display_name | AdaBoost |
| concepts[12].id | https://openalex.org/C144024400 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[12].display_name | Sociology |
| concepts[13].id | https://openalex.org/C71924100 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[13].display_name | Medicine |
| concepts[14].id | https://openalex.org/C149923435 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q37732 |
| concepts[14].display_name | Demography |
| concepts[15].id | https://openalex.org/C126838900 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[15].display_name | Radiology |
| keywords[0].id | https://openalex.org/keywords/missing-data |
| keywords[0].score | 0.8589601516723633 |
| keywords[0].display_name | Missing data |
| keywords[1].id | https://openalex.org/keywords/imputation |
| keywords[1].score | 0.7538101673126221 |
| keywords[1].display_name | Imputation (statistics) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6629669666290283 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/weighting |
| keywords[3].score | 0.6072483658790588 |
| keywords[3].display_name | Weighting |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5990009903907776 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/classifier |
| keywords[5].score | 0.5834717750549316 |
| keywords[5].display_name | Classifier (UML) |
| keywords[6].id | https://openalex.org/keywords/discriminative-model |
| keywords[6].score | 0.5485265851020813 |
| keywords[6].display_name | Discriminative model |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.5024874210357666 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.4720227122306824 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.46270325779914856 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/population |
| keywords[10].score | 0.4378505051136017 |
| keywords[10].display_name | Population |
| keywords[11].id | https://openalex.org/keywords/adaboost |
| keywords[11].score | 0.433095246553421 |
| keywords[11].display_name | AdaBoost |
| language | en |
| locations[0].id | doi:10.1007/s10994-015-5530-z |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S62148650 |
| locations[0].source.issn | 0885-6125, 1573-0565 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0885-6125 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Machine Learning |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s10994-015-5530-z.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Machine Learning |
| locations[0].landing_page_url | https://doi.org/10.1007/s10994-015-5530-z |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5113532360 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Bryan Conroy |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210131230 |
| authorships[0].affiliations[0].raw_affiliation_string | Philips Research North America, Briarcliff Manor, NY, USA |
| authorships[0].institutions[0].id | https://openalex.org/I4210131230 |
| authorships[0].institutions[0].ror | https://ror.org/03kw6wr76 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210122849, https://openalex.org/I4210131230 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Philips (United States) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bryan Conroy |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Philips Research North America, Briarcliff Manor, NY, USA |
| authorships[1].author.id | https://openalex.org/A5090061988 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Larry J. Eshelman |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210131230 |
| authorships[1].affiliations[0].raw_affiliation_string | Philips Research North America, Briarcliff Manor, NY, USA |
| authorships[1].institutions[0].id | https://openalex.org/I4210131230 |
| authorships[1].institutions[0].ror | https://ror.org/03kw6wr76 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210122849, https://openalex.org/I4210131230 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Philips (United States) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Larry Eshelman |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Philips Research North America, Briarcliff Manor, NY, USA |
| authorships[2].author.id | https://openalex.org/A5089347879 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Cristhian Potes |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210131230 |
| authorships[2].affiliations[0].raw_affiliation_string | Philips Research North America, Briarcliff Manor, NY, USA |
| authorships[2].institutions[0].id | https://openalex.org/I4210131230 |
| authorships[2].institutions[0].ror | https://ror.org/03kw6wr76 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210122849, https://openalex.org/I4210131230 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Philips (United States) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Cristhian Potes |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Philips Research North America, Briarcliff Manor, NY, USA |
| authorships[3].author.id | https://openalex.org/A5088639811 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4062-0282 |
| authorships[3].author.display_name | Minnan Xu-Wilson |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210131230 |
| authorships[3].affiliations[0].raw_affiliation_string | Philips Research North America, Briarcliff Manor, NY, USA |
| authorships[3].institutions[0].id | https://openalex.org/I4210131230 |
| authorships[3].institutions[0].ror | https://ror.org/03kw6wr76 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210122849, https://openalex.org/I4210131230 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Philips (United States) |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Minnan Xu-Wilson |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Philips Research North America, Briarcliff Manor, NY, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s10994-015-5530-z.pdf |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A dynamic ensemble approach to robust classification in the presence of missing data |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10218 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9900000095367432 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2713 |
| primary_topic.subfield.display_name | Epidemiology |
| primary_topic.display_name | Sepsis Diagnosis and Treatment |
| related_works | https://openalex.org/W2181530120, https://openalex.org/W4211215373, https://openalex.org/W2024529227, https://openalex.org/W1574575415, https://openalex.org/W3144172081, https://openalex.org/W3179858851, https://openalex.org/W3028371478, https://openalex.org/W2081476516, https://openalex.org/W2581984549, https://openalex.org/W2753779043 |
| cited_by_count | 46 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 10 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 8 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 2 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 5 |
| counts_by_year[7].year | 2018 |
| counts_by_year[7].cited_by_count | 4 |
| counts_by_year[8].year | 2017 |
| counts_by_year[8].cited_by_count | 6 |
| counts_by_year[9].year | 2016 |
| counts_by_year[9].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1007/s10994-015-5530-z |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S62148650 |
| best_oa_location.source.issn | 0885-6125, 1573-0565 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0885-6125 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Machine Learning |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s10994-015-5530-z.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Machine Learning |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s10994-015-5530-z |
| primary_location.id | doi:10.1007/s10994-015-5530-z |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S62148650 |
| primary_location.source.issn | 0885-6125, 1573-0565 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0885-6125 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Machine Learning |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s10994-015-5530-z.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Machine Learning |
| primary_location.landing_page_url | https://doi.org/10.1007/s10994-015-5530-z |
| publication_date | 2015-10-20 |
| publication_year | 2015 |
| referenced_works | https://openalex.org/W6806061180, https://openalex.org/W6821777662, https://openalex.org/W1608675337, https://openalex.org/W6741046688, https://openalex.org/W2101019427, https://openalex.org/W6681651645, https://openalex.org/W1678356000, https://openalex.org/W2787894218, https://openalex.org/W1822348759, https://openalex.org/W2314663488, https://openalex.org/W1661786820, https://openalex.org/W2010339935, https://openalex.org/W2104648049, https://openalex.org/W4300187280, https://openalex.org/W4244952642, https://openalex.org/W6637845589, https://openalex.org/W1566916806, https://openalex.org/W28412257, https://openalex.org/W2736565522, https://openalex.org/W2914369697, https://openalex.org/W1751428553, https://openalex.org/W4285719527, https://openalex.org/W2032210760, https://openalex.org/W2125399808, https://openalex.org/W1480376833, https://openalex.org/W1550443206, https://openalex.org/W2145073242, https://openalex.org/W2056927780 |
| referenced_works_count | 28 |
| abstract_inverted_index | |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5113532360 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I4210131230 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.7200000286102295 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.89085083 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |