A Dynamic Stiefel Graph Neural Network for Efficient Spatio-Temporal Time Series Forecasting Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2506.00798
Spatio-temporal time series (STTS) have been widely used in many applications. However, accurately forecasting STTS is challenging due to complex dynamic correlations in both time and space dimensions. Existing graph neural networks struggle to balance effectiveness and efficiency in modeling dynamic spatio-temporal relations. To address this problem, we propose the Dynamic Spatio-Temporal Stiefel Graph Neural Network (DST-SGNN) to efficiently process STTS. For DST-SGNN, we first introduce the novel Stiefel Graph Spectral Convolution (SGSC) and Stiefel Graph Fourier Transform (SGFT). The SGFT matrix in SGSC is constrained to lie on the Stiefel manifold, and SGSC can be regarded as a filtered graph spectral convolution. We also propose the Linear Dynamic Graph Optimization on Stiefel Manifold (LDGOSM), which can efficiently learn the SGFT matrix from the dynamic graph and significantly reduce the computational complexity. Finally, we propose a multi-layer SGSC (MSGSC) that efficiently captures complex spatio-temporal correlations. Extensive experiments on seven spatio-temporal datasets show that DST-SGNN outperforms state-of-the-art methods while maintaining relatively low computational costs.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2506.00798
- https://arxiv.org/pdf/2506.00798
- OA Status
- green
- Cited By
- 1
- OpenAlex ID
- https://openalex.org/W4414892806
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414892806Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2506.00798Digital Object Identifier
- Title
-
A Dynamic Stiefel Graph Neural Network for Efficient Spatio-Temporal Time Series ForecastingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-01Full publication date if available
- Authors
-
J. P. Zheng, Liang XieList of authors in order
- Landing page
-
https://arxiv.org/abs/2506.00798Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2506.00798Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2506.00798Direct OA link when available
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
Full payload
| id | https://openalex.org/W4414892806 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2506.00798 |
| ids.doi | https://doi.org/10.48550/arxiv.2506.00798 |
| ids.openalex | https://openalex.org/W4414892806 |
| fwci | |
| type | preprint |
| title | A Dynamic Stiefel Graph Neural Network for Efficient Spatio-Temporal Time Series Forecasting |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12205 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.982200026512146 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Time Series Analysis and Forecasting |
| topics[1].id | https://openalex.org/T10320 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9361000061035156 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Neural Networks and Applications |
| topics[2].id | https://openalex.org/T13734 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9079999923706055 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Advanced Computational Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2506.00798 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2506.00798 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2506.00798 |
| locations[1].id | doi:10.48550/arxiv.2506.00798 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2506.00798 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5050899124 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4891-0989 |
| authorships[0].author.display_name | J. P. Zheng |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zheng, Jiankai |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101460488 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1718-7556 |
| authorships[1].author.display_name | Liang Xie |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Xie, Liang |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2506.00798 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Dynamic Stiefel Graph Neural Network for Efficient Spatio-Temporal Time Series Forecasting |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12205 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.982200026512146 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Time Series Analysis and Forecasting |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2506.00798 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2506.00798 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2506.00798 |
| primary_location.id | pmh:oai:arXiv.org:2506.00798 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2506.00798 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2506.00798 |
| publication_date | 2025-06-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 98, 135 |
| abstract_inverted_index.To | 43 |
| abstract_inverted_index.We | 103 |
| abstract_inverted_index.as | 97 |
| abstract_inverted_index.be | 95 |
| abstract_inverted_index.in | 8, 22, 38, 82 |
| abstract_inverted_index.is | 15, 84 |
| abstract_inverted_index.on | 88, 111, 147 |
| abstract_inverted_index.to | 18, 33, 57, 86 |
| abstract_inverted_index.we | 47, 63, 133 |
| abstract_inverted_index.For | 61 |
| abstract_inverted_index.The | 79 |
| abstract_inverted_index.and | 25, 36, 73, 92, 126 |
| abstract_inverted_index.can | 94, 116 |
| abstract_inverted_index.due | 17 |
| abstract_inverted_index.lie | 87 |
| abstract_inverted_index.low | 160 |
| abstract_inverted_index.the | 49, 66, 89, 106, 119, 123, 129 |
| abstract_inverted_index.SGFT | 80, 120 |
| abstract_inverted_index.SGSC | 83, 93, 137 |
| abstract_inverted_index.STTS | 14 |
| abstract_inverted_index.also | 104 |
| abstract_inverted_index.been | 5 |
| abstract_inverted_index.both | 23 |
| abstract_inverted_index.from | 122 |
| abstract_inverted_index.have | 4 |
| abstract_inverted_index.many | 9 |
| abstract_inverted_index.show | 151 |
| abstract_inverted_index.that | 139, 152 |
| abstract_inverted_index.this | 45 |
| abstract_inverted_index.time | 1, 24 |
| abstract_inverted_index.used | 7 |
| abstract_inverted_index.Graph | 53, 69, 75, 109 |
| abstract_inverted_index.STTS. | 60 |
| abstract_inverted_index.first | 64 |
| abstract_inverted_index.graph | 29, 100, 125 |
| abstract_inverted_index.learn | 118 |
| abstract_inverted_index.novel | 67 |
| abstract_inverted_index.seven | 148 |
| abstract_inverted_index.space | 26 |
| abstract_inverted_index.which | 115 |
| abstract_inverted_index.while | 157 |
| abstract_inverted_index.(SGSC) | 72 |
| abstract_inverted_index.(STTS) | 3 |
| abstract_inverted_index.Linear | 107 |
| abstract_inverted_index.Neural | 54 |
| abstract_inverted_index.costs. | 162 |
| abstract_inverted_index.matrix | 81, 121 |
| abstract_inverted_index.neural | 30 |
| abstract_inverted_index.reduce | 128 |
| abstract_inverted_index.series | 2 |
| abstract_inverted_index.widely | 6 |
| abstract_inverted_index.(MSGSC) | 138 |
| abstract_inverted_index.(SGFT). | 78 |
| abstract_inverted_index.Dynamic | 50, 108 |
| abstract_inverted_index.Fourier | 76 |
| abstract_inverted_index.Network | 55 |
| abstract_inverted_index.Stiefel | 52, 68, 74, 90, 112 |
| abstract_inverted_index.address | 44 |
| abstract_inverted_index.balance | 34 |
| abstract_inverted_index.complex | 19, 142 |
| abstract_inverted_index.dynamic | 20, 40, 124 |
| abstract_inverted_index.methods | 156 |
| abstract_inverted_index.process | 59 |
| abstract_inverted_index.propose | 48, 105, 134 |
| abstract_inverted_index.DST-SGNN | 153 |
| abstract_inverted_index.Existing | 28 |
| abstract_inverted_index.Finally, | 132 |
| abstract_inverted_index.However, | 11 |
| abstract_inverted_index.Manifold | 113 |
| abstract_inverted_index.Spectral | 70 |
| abstract_inverted_index.captures | 141 |
| abstract_inverted_index.datasets | 150 |
| abstract_inverted_index.filtered | 99 |
| abstract_inverted_index.modeling | 39 |
| abstract_inverted_index.networks | 31 |
| abstract_inverted_index.problem, | 46 |
| abstract_inverted_index.regarded | 96 |
| abstract_inverted_index.spectral | 101 |
| abstract_inverted_index.struggle | 32 |
| abstract_inverted_index.(LDGOSM), | 114 |
| abstract_inverted_index.DST-SGNN, | 62 |
| abstract_inverted_index.Extensive | 145 |
| abstract_inverted_index.Transform | 77 |
| abstract_inverted_index.introduce | 65 |
| abstract_inverted_index.manifold, | 91 |
| abstract_inverted_index.(DST-SGNN) | 56 |
| abstract_inverted_index.accurately | 12 |
| abstract_inverted_index.efficiency | 37 |
| abstract_inverted_index.relations. | 42 |
| abstract_inverted_index.relatively | 159 |
| abstract_inverted_index.Convolution | 71 |
| abstract_inverted_index.challenging | 16 |
| abstract_inverted_index.complexity. | 131 |
| abstract_inverted_index.constrained | 85 |
| abstract_inverted_index.dimensions. | 27 |
| abstract_inverted_index.efficiently | 58, 117, 140 |
| abstract_inverted_index.experiments | 146 |
| abstract_inverted_index.forecasting | 13 |
| abstract_inverted_index.maintaining | 158 |
| abstract_inverted_index.multi-layer | 136 |
| abstract_inverted_index.outperforms | 154 |
| abstract_inverted_index.Optimization | 110 |
| abstract_inverted_index.convolution. | 102 |
| abstract_inverted_index.correlations | 21 |
| abstract_inverted_index.applications. | 10 |
| abstract_inverted_index.computational | 130, 161 |
| abstract_inverted_index.correlations. | 144 |
| abstract_inverted_index.effectiveness | 35 |
| abstract_inverted_index.significantly | 127 |
| abstract_inverted_index.Spatio-Temporal | 51 |
| abstract_inverted_index.Spatio-temporal | 0 |
| abstract_inverted_index.spatio-temporal | 41, 143, 149 |
| abstract_inverted_index.state-of-the-art | 155 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |