A Dynamic Variational Framework for Open-World Node Classification in Structured Sequences Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1109/icdm54844.2022.00081
Structured sequences are a popular data representation, used to model complex data such as traffic networks. A key machine learning task for structured sequences is node classification, that is predicting the class labels of unlabeled nodes. Though many node classification models were proposed, they assume a closed world setting, that all class labels appear in the training data. But in the real-world, the presence of never-before-seen class labels in testing data can considerably degrade a classifier's accuracy. A promising solution to this issue is to build classifiers for an open-world setting, where samples with unknown class labels are continuously observed such that training and testing data may have different class label spaces. Several approaches have been proposed for open-world learning problems in computer vision and natural language processing, but they cannot be applied directly to structured sequences due to the complexity of their non-Euclidean properties and their dynamic nature. This paper addresses this important research gap by proposing a novel Open-world Structured Sequence node Classification (OSSC) model, to learn from structured sequences in an open-world setting. OSSC captures the structural and temporal information via a GCN-based dynamic variational framework. A latent distribution sequence is learned for each node using both stochastic states and deterministic states, to capture the evolution of node attributes and topology, followed by a sampling process to generate node representations. An open-world classification loss is further adopted to ensure that node representations are sensitive to unknown classes. And a combination of Openmax and Softmax is utilized to recognize nodes from unknown classes and to classify others to one of the known classes. Experiments on real-world datasets show that the proposed OSSC method is capable of learning accurate open-world node classifiers from structured sequence data.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/icdm54844.2022.00081
- OA Status
- green
- Cited By
- 4
- References
- 49
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4318823333
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4318823333Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/icdm54844.2022.00081Digital Object Identifier
- Title
-
A Dynamic Variational Framework for Open-World Node Classification in Structured SequencesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-11-01Full publication date if available
- Authors
-
Qin Zhang, Qincai Li, Xiaojun Chen, Peng Zhang, Shirui Pan, Philippe Fournier‐Viger, Joshua Zhexue HuangList of authors in order
- Landing page
-
https://doi.org/10.1109/icdm54844.2022.00081Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://hdl.handle.net/10072/421806Direct OA link when available
- Concepts
-
Computer science, Classifier (UML), Node (physics), Artificial intelligence, Class (philosophy), Machine learning, Sequence labeling, Data mining, Theoretical computer science, Task (project management), Management, Economics, Structural engineering, EngineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
49Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4318823333 |
|---|---|
| doi | https://doi.org/10.1109/icdm54844.2022.00081 |
| ids.doi | https://doi.org/10.1109/icdm54844.2022.00081 |
| ids.openalex | https://openalex.org/W4318823333 |
| fwci | 1.5650195 |
| type | article |
| title | A Dynamic Variational Framework for Open-World Node Classification in Structured Sequences |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 712 |
| biblio.first_page | 703 |
| topics[0].id | https://openalex.org/T11344 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2215 |
| topics[0].subfield.display_name | Building and Construction |
| topics[0].display_name | Traffic Prediction and Management Techniques |
| topics[1].id | https://openalex.org/T11980 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9976999759674072 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3313 |
| topics[1].subfield.display_name | Transportation |
| topics[1].display_name | Human Mobility and Location-Based Analysis |
| topics[2].id | https://openalex.org/T11598 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9944999814033508 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Internet Traffic Analysis and Secure E-voting |
| funders[0].id | https://openalex.org/F4320330400 |
| funders[0].ror | |
| funders[0].display_name | Shenzhen Research Foundation |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.730343759059906 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C95623464 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6676589250564575 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[1].display_name | Classifier (UML) |
| concepts[2].id | https://openalex.org/C62611344 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6306906938552856 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1062658 |
| concepts[2].display_name | Node (physics) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5764157772064209 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C2777212361 |
| concepts[4].level | 2 |
| concepts[4].score | 0.47165647149086 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[4].display_name | Class (philosophy) |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.46376726031303406 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C35639132 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4447852075099945 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7452468 |
| concepts[6].display_name | Sequence labeling |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.413043349981308 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C80444323 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3496416211128235 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[8].display_name | Theoretical computer science |
| concepts[9].id | https://openalex.org/C2780451532 |
| concepts[9].level | 2 |
| concepts[9].score | 0.21486464142799377 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[9].display_name | Task (project management) |
| concepts[10].id | https://openalex.org/C187736073 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[10].display_name | Management |
| concepts[11].id | https://openalex.org/C162324750 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[11].display_name | Economics |
| concepts[12].id | https://openalex.org/C66938386 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q633538 |
| concepts[12].display_name | Structural engineering |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.730343759059906 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/classifier |
| keywords[1].score | 0.6676589250564575 |
| keywords[1].display_name | Classifier (UML) |
| keywords[2].id | https://openalex.org/keywords/node |
| keywords[2].score | 0.6306906938552856 |
| keywords[2].display_name | Node (physics) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5764157772064209 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/class |
| keywords[4].score | 0.47165647149086 |
| keywords[4].display_name | Class (philosophy) |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.46376726031303406 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/sequence-labeling |
| keywords[6].score | 0.4447852075099945 |
| keywords[6].display_name | Sequence labeling |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.413043349981308 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[8].score | 0.3496416211128235 |
| keywords[8].display_name | Theoretical computer science |
| keywords[9].id | https://openalex.org/keywords/task |
| keywords[9].score | 0.21486464142799377 |
| keywords[9].display_name | Task (project management) |
| language | en |
| locations[0].id | doi:10.1109/icdm54844.2022.00081 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4363608104 |
| locations[0].source.issn | |
| locations[0].source.type | conference |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | 2022 IEEE International Conference on Data Mining (ICDM) |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2022 IEEE International Conference on Data Mining (ICDM) |
| locations[0].landing_page_url | https://doi.org/10.1109/icdm54844.2022.00081 |
| locations[1].id | pmh:oai:research-repository.griffith.edu.au:10072/421806 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402548 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Griffith Research Online (Griffith University, Queensland, Australia) |
| locations[1].source.host_organization | https://openalex.org/I11701301 |
| locations[1].source.host_organization_name | Griffith University |
| locations[1].source.host_organization_lineage | https://openalex.org/I11701301 |
| locations[1].license | other-oa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Conference output |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://hdl.handle.net/10072/421806 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100418216 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2742-1521 |
| authorships[0].author.display_name | Qin Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I180726961 |
| authorships[0].affiliations[0].raw_affiliation_string | Shenzhen University, Guangdong, China |
| authorships[0].institutions[0].id | https://openalex.org/I180726961 |
| authorships[0].institutions[0].ror | https://ror.org/01vy4gh70 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I180726961 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Shenzhen University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Qin Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Shenzhen University, Guangdong, China |
| authorships[1].author.id | https://openalex.org/A5051163908 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Qincai Li |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I180726961 |
| authorships[1].affiliations[0].raw_affiliation_string | Shenzhen University, Guangdong, China |
| authorships[1].institutions[0].id | https://openalex.org/I180726961 |
| authorships[1].institutions[0].ror | https://ror.org/01vy4gh70 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I180726961 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shenzhen University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Qincai Li |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Shenzhen University, Guangdong, China |
| authorships[2].author.id | https://openalex.org/A5100369438 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2818-4652 |
| authorships[2].author.display_name | Xiaojun Chen |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I180726961 |
| authorships[2].affiliations[0].raw_affiliation_string | Shenzhen University, Guangdong, China |
| authorships[2].institutions[0].id | https://openalex.org/I180726961 |
| authorships[2].institutions[0].ror | https://ror.org/01vy4gh70 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I180726961 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Shenzhen University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xiaojun Chen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Shenzhen University, Guangdong, China |
| authorships[3].author.id | https://openalex.org/A5100364028 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6953-800X |
| authorships[3].author.display_name | Peng Zhang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I37987034 |
| authorships[3].affiliations[0].raw_affiliation_string | Guangzhou University, Guangdong, China |
| authorships[3].institutions[0].id | https://openalex.org/I37987034 |
| authorships[3].institutions[0].ror | https://ror.org/05ar8rn06 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I37987034 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Guangzhou University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Peng Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Guangzhou University, Guangdong, China |
| authorships[4].author.id | https://openalex.org/A5008056593 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0794-527X |
| authorships[4].author.display_name | Shirui Pan |
| authorships[4].countries | AU |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I11701301 |
| authorships[4].affiliations[0].raw_affiliation_string | Griffith University, Queensland, Australia |
| authorships[4].institutions[0].id | https://openalex.org/I11701301 |
| authorships[4].institutions[0].ror | https://ror.org/02sc3r913 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I11701301 |
| authorships[4].institutions[0].country_code | AU |
| authorships[4].institutions[0].display_name | Griffith University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Shirui Pan |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Griffith University, Queensland, Australia |
| authorships[5].author.id | https://openalex.org/A5038682039 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7680-9899 |
| authorships[5].author.display_name | Philippe Fournier‐Viger |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I180726961 |
| authorships[5].affiliations[0].raw_affiliation_string | Shenzhen University, Guangdong, China |
| authorships[5].institutions[0].id | https://openalex.org/I180726961 |
| authorships[5].institutions[0].ror | https://ror.org/01vy4gh70 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I180726961 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Shenzhen University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Philippe Fournier-Viger |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Shenzhen University, Guangdong, China |
| authorships[6].author.id | https://openalex.org/A5003347359 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-6797-2571 |
| authorships[6].author.display_name | Joshua Zhexue Huang |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I180726961 |
| authorships[6].affiliations[0].raw_affiliation_string | Shenzhen University, Guangdong, China |
| authorships[6].institutions[0].id | https://openalex.org/I180726961 |
| authorships[6].institutions[0].ror | https://ror.org/01vy4gh70 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I180726961 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Shenzhen University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Joshua Zhexue Huang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Shenzhen University, Guangdong, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://hdl.handle.net/10072/421806 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Dynamic Variational Framework for Open-World Node Classification in Structured Sequences |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11344 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2215 |
| primary_topic.subfield.display_name | Building and Construction |
| primary_topic.display_name | Traffic Prediction and Management Techniques |
| related_works | https://openalex.org/W2798423868, https://openalex.org/W3015678144, https://openalex.org/W3027026357, https://openalex.org/W2962906565, https://openalex.org/W142195158, https://openalex.org/W3033772826, https://openalex.org/W2913095682, https://openalex.org/W1559469979, https://openalex.org/W2921275181, https://openalex.org/W2368454205 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:research-repository.griffith.edu.au:10072/421806 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402548 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Griffith Research Online (Griffith University, Queensland, Australia) |
| best_oa_location.source.host_organization | https://openalex.org/I11701301 |
| best_oa_location.source.host_organization_name | Griffith University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I11701301 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Conference output |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://hdl.handle.net/10072/421806 |
| primary_location.id | doi:10.1109/icdm54844.2022.00081 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4363608104 |
| primary_location.source.issn | |
| primary_location.source.type | conference |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | 2022 IEEE International Conference on Data Mining (ICDM) |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2022 IEEE International Conference on Data Mining (ICDM) |
| primary_location.landing_page_url | https://doi.org/10.1109/icdm54844.2022.00081 |
| publication_date | 2022-11-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3004366655, https://openalex.org/W1982459859, https://openalex.org/W2014679376, https://openalex.org/W2890659396, https://openalex.org/W2950969150, https://openalex.org/W2964811671, https://openalex.org/W3199378187, https://openalex.org/W2971624117, https://openalex.org/W3112926360, https://openalex.org/W2997848713, https://openalex.org/W6769669728, https://openalex.org/W2963212338, https://openalex.org/W3035081753, https://openalex.org/W3134509497, https://openalex.org/W6748529151, https://openalex.org/W3173421061, https://openalex.org/W6768314895, https://openalex.org/W2998313947, https://openalex.org/W3109137304, https://openalex.org/W2998116985, https://openalex.org/W3045255111, https://openalex.org/W3129488702, https://openalex.org/W3176709420, https://openalex.org/W3164246203, https://openalex.org/W3035224069, https://openalex.org/W3014773921, https://openalex.org/W3035371495, https://openalex.org/W3189989129, https://openalex.org/W3199066198, https://openalex.org/W6726873649, https://openalex.org/W6712395597, https://openalex.org/W3128465814, https://openalex.org/W3217536461, https://openalex.org/W6754995574, https://openalex.org/W2963149653, https://openalex.org/W2963875483, https://openalex.org/W2963924212, https://openalex.org/W3191599629, https://openalex.org/W6788564117, https://openalex.org/W3113256917, https://openalex.org/W2964015378, https://openalex.org/W2981806891, https://openalex.org/W2965469401, https://openalex.org/W2978508283, https://openalex.org/W4255556797, https://openalex.org/W4297733535, https://openalex.org/W2396566817, https://openalex.org/W2952140516, https://openalex.org/W3123001214 |
| referenced_works_count | 49 |
| abstract_inverted_index.A | 16, 77, 189 |
| abstract_inverted_index.a | 3, 45, 74, 158, 184, 216, 241 |
| abstract_inverted_index.An | 223 |
| abstract_inverted_index.an | 88, 173 |
| abstract_inverted_index.as | 13 |
| abstract_inverted_index.be | 131 |
| abstract_inverted_index.by | 156, 215 |
| abstract_inverted_index.in | 54, 59, 68, 121, 172 |
| abstract_inverted_index.is | 24, 28, 83, 193, 227, 247, 275 |
| abstract_inverted_index.of | 33, 64, 141, 209, 243, 261, 277 |
| abstract_inverted_index.on | 266 |
| abstract_inverted_index.to | 8, 80, 84, 134, 138, 167, 205, 219, 230, 237, 249, 256, 259 |
| abstract_inverted_index.And | 240 |
| abstract_inverted_index.But | 58 |
| abstract_inverted_index.all | 50 |
| abstract_inverted_index.and | 103, 124, 145, 180, 202, 212, 245, 255 |
| abstract_inverted_index.are | 2, 97, 235 |
| abstract_inverted_index.but | 128 |
| abstract_inverted_index.can | 71 |
| abstract_inverted_index.due | 137 |
| abstract_inverted_index.for | 21, 87, 117, 195 |
| abstract_inverted_index.gap | 155 |
| abstract_inverted_index.key | 17 |
| abstract_inverted_index.may | 106 |
| abstract_inverted_index.one | 260 |
| abstract_inverted_index.the | 30, 55, 60, 62, 139, 178, 207, 262, 271 |
| abstract_inverted_index.via | 183 |
| abstract_inverted_index.OSSC | 176, 273 |
| abstract_inverted_index.This | 149 |
| abstract_inverted_index.been | 115 |
| abstract_inverted_index.both | 199 |
| abstract_inverted_index.data | 5, 11, 70, 105 |
| abstract_inverted_index.each | 196 |
| abstract_inverted_index.from | 169, 252, 283 |
| abstract_inverted_index.have | 107, 114 |
| abstract_inverted_index.loss | 226 |
| abstract_inverted_index.many | 37 |
| abstract_inverted_index.node | 25, 38, 163, 197, 210, 221, 233, 281 |
| abstract_inverted_index.show | 269 |
| abstract_inverted_index.such | 12, 100 |
| abstract_inverted_index.task | 20 |
| abstract_inverted_index.that | 27, 49, 101, 232, 270 |
| abstract_inverted_index.they | 43, 129 |
| abstract_inverted_index.this | 81, 152 |
| abstract_inverted_index.used | 7 |
| abstract_inverted_index.were | 41 |
| abstract_inverted_index.with | 93 |
| abstract_inverted_index.build | 85 |
| abstract_inverted_index.class | 31, 51, 66, 95, 109 |
| abstract_inverted_index.data. | 57, 286 |
| abstract_inverted_index.issue | 82 |
| abstract_inverted_index.known | 263 |
| abstract_inverted_index.label | 110 |
| abstract_inverted_index.learn | 168 |
| abstract_inverted_index.model | 9 |
| abstract_inverted_index.nodes | 251 |
| abstract_inverted_index.novel | 159 |
| abstract_inverted_index.paper | 150 |
| abstract_inverted_index.their | 142, 146 |
| abstract_inverted_index.using | 198 |
| abstract_inverted_index.where | 91 |
| abstract_inverted_index.world | 47 |
| abstract_inverted_index.(OSSC) | 165 |
| abstract_inverted_index.Though | 36 |
| abstract_inverted_index.appear | 53 |
| abstract_inverted_index.assume | 44 |
| abstract_inverted_index.cannot | 130 |
| abstract_inverted_index.closed | 46 |
| abstract_inverted_index.ensure | 231 |
| abstract_inverted_index.labels | 32, 52, 67, 96 |
| abstract_inverted_index.latent | 190 |
| abstract_inverted_index.method | 274 |
| abstract_inverted_index.model, | 166 |
| abstract_inverted_index.models | 40 |
| abstract_inverted_index.nodes. | 35 |
| abstract_inverted_index.others | 258 |
| abstract_inverted_index.states | 201 |
| abstract_inverted_index.vision | 123 |
| abstract_inverted_index.Openmax | 244 |
| abstract_inverted_index.Several | 112 |
| abstract_inverted_index.Softmax | 246 |
| abstract_inverted_index.adopted | 229 |
| abstract_inverted_index.applied | 132 |
| abstract_inverted_index.capable | 276 |
| abstract_inverted_index.capture | 206 |
| abstract_inverted_index.classes | 254 |
| abstract_inverted_index.complex | 10 |
| abstract_inverted_index.degrade | 73 |
| abstract_inverted_index.dynamic | 147, 186 |
| abstract_inverted_index.further | 228 |
| abstract_inverted_index.learned | 194 |
| abstract_inverted_index.machine | 18 |
| abstract_inverted_index.natural | 125 |
| abstract_inverted_index.nature. | 148 |
| abstract_inverted_index.popular | 4 |
| abstract_inverted_index.process | 218 |
| abstract_inverted_index.samples | 92 |
| abstract_inverted_index.spaces. | 111 |
| abstract_inverted_index.states, | 204 |
| abstract_inverted_index.testing | 69, 104 |
| abstract_inverted_index.traffic | 14 |
| abstract_inverted_index.unknown | 94, 238, 253 |
| abstract_inverted_index.Sequence | 162 |
| abstract_inverted_index.accurate | 279 |
| abstract_inverted_index.captures | 177 |
| abstract_inverted_index.classes. | 239, 264 |
| abstract_inverted_index.classify | 257 |
| abstract_inverted_index.computer | 122 |
| abstract_inverted_index.datasets | 268 |
| abstract_inverted_index.directly | 133 |
| abstract_inverted_index.followed | 214 |
| abstract_inverted_index.generate | 220 |
| abstract_inverted_index.language | 126 |
| abstract_inverted_index.learning | 19, 119, 278 |
| abstract_inverted_index.observed | 99 |
| abstract_inverted_index.presence | 63 |
| abstract_inverted_index.problems | 120 |
| abstract_inverted_index.proposed | 116, 272 |
| abstract_inverted_index.research | 154 |
| abstract_inverted_index.sampling | 217 |
| abstract_inverted_index.sequence | 192, 285 |
| abstract_inverted_index.setting, | 48, 90 |
| abstract_inverted_index.setting. | 175 |
| abstract_inverted_index.solution | 79 |
| abstract_inverted_index.temporal | 181 |
| abstract_inverted_index.training | 56, 102 |
| abstract_inverted_index.utilized | 248 |
| abstract_inverted_index.GCN-based | 185 |
| abstract_inverted_index.accuracy. | 76 |
| abstract_inverted_index.addresses | 151 |
| abstract_inverted_index.different | 108 |
| abstract_inverted_index.evolution | 208 |
| abstract_inverted_index.important | 153 |
| abstract_inverted_index.networks. | 15 |
| abstract_inverted_index.promising | 78 |
| abstract_inverted_index.proposed, | 42 |
| abstract_inverted_index.proposing | 157 |
| abstract_inverted_index.recognize | 250 |
| abstract_inverted_index.sensitive | 236 |
| abstract_inverted_index.sequences | 1, 23, 136, 171 |
| abstract_inverted_index.topology, | 213 |
| abstract_inverted_index.unlabeled | 34 |
| abstract_inverted_index.Open-world | 160 |
| abstract_inverted_index.Structured | 0, 161 |
| abstract_inverted_index.approaches | 113 |
| abstract_inverted_index.attributes | 211 |
| abstract_inverted_index.complexity | 140 |
| abstract_inverted_index.framework. | 188 |
| abstract_inverted_index.open-world | 89, 118, 174, 224, 280 |
| abstract_inverted_index.predicting | 29 |
| abstract_inverted_index.properties | 144 |
| abstract_inverted_index.real-world | 267 |
| abstract_inverted_index.stochastic | 200 |
| abstract_inverted_index.structural | 179 |
| abstract_inverted_index.structured | 22, 135, 170, 284 |
| abstract_inverted_index.Experiments | 265 |
| abstract_inverted_index.classifiers | 86, 282 |
| abstract_inverted_index.combination | 242 |
| abstract_inverted_index.information | 182 |
| abstract_inverted_index.processing, | 127 |
| abstract_inverted_index.real-world, | 61 |
| abstract_inverted_index.variational | 187 |
| abstract_inverted_index.classifier's | 75 |
| abstract_inverted_index.considerably | 72 |
| abstract_inverted_index.continuously | 98 |
| abstract_inverted_index.distribution | 191 |
| abstract_inverted_index.deterministic | 203 |
| abstract_inverted_index.non-Euclidean | 143 |
| abstract_inverted_index.Classification | 164 |
| abstract_inverted_index.classification | 39, 225 |
| abstract_inverted_index.classification, | 26 |
| abstract_inverted_index.representation, | 6 |
| abstract_inverted_index.representations | 234 |
| abstract_inverted_index.representations. | 222 |
| abstract_inverted_index.never-before-seen | 65 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.82897959 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |