A Fast and Robust Place Recognition Approach for Stereo Visual Odometry Using LiDAR Descriptors Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1909.07267
Place recognition is a core component of Simultaneous Localization and Mapping (SLAM) algorithms. Particularly in visual SLAM systems, previously-visited places are recognized by measuring the appearance similarity between images representing these locations. However, such approaches are sensitive to visual appearance change and also can be computationally expensive. In this paper, we propose an alternative approach adapting LiDAR descriptors for 3D points obtained from stereo-visual odometry for place recognition. 3D points are potentially more reliable than 2D visual cues (e.g., 2D features) against environmental changes (e.g., variable illumination) and this may benefit visual SLAM systems in long-term deployment scenarios. Stereo-visual odometry generates 3D points with an absolute scale, which enables us to use LiDAR descriptors for place recognition with high computational efficiency. Through extensive evaluations on standard benchmark datasets, we demonstrate the accuracy, efficiency, and robustness of using 3D points for place recognition over 2D methods.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1909.07267
- https://arxiv.org/pdf/1909.07267
- OA Status
- green
- References
- 28
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3038748551
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3038748551Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1909.07267Digital Object Identifier
- Title
-
A Fast and Robust Place Recognition Approach for Stereo Visual Odometry Using LiDAR DescriptorsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-09-16Full publication date if available
- Authors
-
Jiawei Mo, Junaed SattarList of authors in order
- Landing page
-
https://arxiv.org/abs/1909.07267Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1909.07267Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1909.07267Direct OA link when available
- Concepts
-
Artificial intelligence, Visual odometry, Lidar, Robustness (evolution), Computer vision, Computer science, Simultaneous localization and mapping, Odometry, Benchmark (surveying), Stereopsis, Pattern recognition (psychology), Robot, Mobile robot, Remote sensing, Geography, Cartography, Chemistry, Gene, BiochemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
28Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3038748551 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1909.07267 |
| ids.doi | https://doi.org/10.48550/arxiv.1909.07267 |
| ids.mag | 3038748551 |
| ids.openalex | https://openalex.org/W3038748551 |
| fwci | |
| type | preprint |
| title | A Fast and Robust Place Recognition Approach for Stereo Visual Odometry Using LiDAR Descriptors |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10191 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Robotics and Sensor-Based Localization |
| topics[1].id | https://openalex.org/T10326 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9987999796867371 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Indoor and Outdoor Localization Technologies |
| topics[2].id | https://openalex.org/T10627 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9970999956130981 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Image and Video Retrieval Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.8142837882041931 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C5799516 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7805066108703613 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q4110915 |
| concepts[1].display_name | Visual odometry |
| concepts[2].id | https://openalex.org/C51399673 |
| concepts[2].level | 2 |
| concepts[2].score | 0.755250096321106 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q504027 |
| concepts[2].display_name | Lidar |
| concepts[3].id | https://openalex.org/C63479239 |
| concepts[3].level | 3 |
| concepts[3].score | 0.7490791082382202 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[3].display_name | Robustness (evolution) |
| concepts[4].id | https://openalex.org/C31972630 |
| concepts[4].level | 1 |
| concepts[4].score | 0.7289026379585266 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[4].display_name | Computer vision |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.6988109946250916 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C86369673 |
| concepts[6].level | 4 |
| concepts[6].score | 0.6746121644973755 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1203659 |
| concepts[6].display_name | Simultaneous localization and mapping |
| concepts[7].id | https://openalex.org/C49441653 |
| concepts[7].level | 4 |
| concepts[7].score | 0.6516366004943848 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2014717 |
| concepts[7].display_name | Odometry |
| concepts[8].id | https://openalex.org/C185798385 |
| concepts[8].level | 2 |
| concepts[8].score | 0.518365204334259 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[8].display_name | Benchmark (surveying) |
| concepts[9].id | https://openalex.org/C68537008 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4381089508533478 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q247932 |
| concepts[9].display_name | Stereopsis |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.379160612821579 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C90509273 |
| concepts[11].level | 2 |
| concepts[11].score | 0.25046849250793457 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11012 |
| concepts[11].display_name | Robot |
| concepts[12].id | https://openalex.org/C19966478 |
| concepts[12].level | 3 |
| concepts[12].score | 0.17653900384902954 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q4810574 |
| concepts[12].display_name | Mobile robot |
| concepts[13].id | https://openalex.org/C62649853 |
| concepts[13].level | 1 |
| concepts[13].score | 0.16230103373527527 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[13].display_name | Remote sensing |
| concepts[14].id | https://openalex.org/C205649164 |
| concepts[14].level | 0 |
| concepts[14].score | 0.15972501039505005 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[14].display_name | Geography |
| concepts[15].id | https://openalex.org/C58640448 |
| concepts[15].level | 1 |
| concepts[15].score | 0.07667553424835205 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[15].display_name | Cartography |
| concepts[16].id | https://openalex.org/C185592680 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[16].display_name | Chemistry |
| concepts[17].id | https://openalex.org/C104317684 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[17].display_name | Gene |
| concepts[18].id | https://openalex.org/C55493867 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[18].display_name | Biochemistry |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.8142837882041931 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/visual-odometry |
| keywords[1].score | 0.7805066108703613 |
| keywords[1].display_name | Visual odometry |
| keywords[2].id | https://openalex.org/keywords/lidar |
| keywords[2].score | 0.755250096321106 |
| keywords[2].display_name | Lidar |
| keywords[3].id | https://openalex.org/keywords/robustness |
| keywords[3].score | 0.7490791082382202 |
| keywords[3].display_name | Robustness (evolution) |
| keywords[4].id | https://openalex.org/keywords/computer-vision |
| keywords[4].score | 0.7289026379585266 |
| keywords[4].display_name | Computer vision |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.6988109946250916 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/simultaneous-localization-and-mapping |
| keywords[6].score | 0.6746121644973755 |
| keywords[6].display_name | Simultaneous localization and mapping |
| keywords[7].id | https://openalex.org/keywords/odometry |
| keywords[7].score | 0.6516366004943848 |
| keywords[7].display_name | Odometry |
| keywords[8].id | https://openalex.org/keywords/benchmark |
| keywords[8].score | 0.518365204334259 |
| keywords[8].display_name | Benchmark (surveying) |
| keywords[9].id | https://openalex.org/keywords/stereopsis |
| keywords[9].score | 0.4381089508533478 |
| keywords[9].display_name | Stereopsis |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.379160612821579 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/robot |
| keywords[11].score | 0.25046849250793457 |
| keywords[11].display_name | Robot |
| keywords[12].id | https://openalex.org/keywords/mobile-robot |
| keywords[12].score | 0.17653900384902954 |
| keywords[12].display_name | Mobile robot |
| keywords[13].id | https://openalex.org/keywords/remote-sensing |
| keywords[13].score | 0.16230103373527527 |
| keywords[13].display_name | Remote sensing |
| keywords[14].id | https://openalex.org/keywords/geography |
| keywords[14].score | 0.15972501039505005 |
| keywords[14].display_name | Geography |
| keywords[15].id | https://openalex.org/keywords/cartography |
| keywords[15].score | 0.07667553424835205 |
| keywords[15].display_name | Cartography |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1909.07267 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1909.07267 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1909.07267 |
| locations[1].id | doi:10.48550/arxiv.1909.07267 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1909.07267 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5087799311 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1043-5353 |
| authorships[0].author.display_name | Jiawei Mo |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I130238516 |
| authorships[0].affiliations[0].raw_affiliation_string | Minnesota Robotics Institute, University of Minnesota Twin Cities,Department of Computer Science and Engineering,Minneapolis,MN,USA |
| authorships[0].institutions[0].id | https://openalex.org/I130238516 |
| authorships[0].institutions[0].ror | https://ror.org/017zqws13 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I130238516 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Minnesota |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jiawei Mo |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Minnesota Robotics Institute, University of Minnesota Twin Cities,Department of Computer Science and Engineering,Minneapolis,MN,USA |
| authorships[1].author.id | https://openalex.org/A5055649336 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3983-6265 |
| authorships[1].author.display_name | Junaed Sattar |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I130238516 |
| authorships[1].affiliations[0].raw_affiliation_string | Minnesota Robotics Institute, University of Minnesota Twin Cities,Department of Computer Science and Engineering,Minneapolis,MN,USA |
| authorships[1].institutions[0].id | https://openalex.org/I130238516 |
| authorships[1].institutions[0].ror | https://ror.org/017zqws13 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I130238516 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Minnesota |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Junaed Sattar |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Minnesota Robotics Institute, University of Minnesota Twin Cities,Department of Computer Science and Engineering,Minneapolis,MN,USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1909.07267 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2020-07-10T00:00:00 |
| display_name | A Fast and Robust Place Recognition Approach for Stereo Visual Odometry Using LiDAR Descriptors |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10191 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Robotics and Sensor-Based Localization |
| related_works | https://openalex.org/W2979950214, https://openalex.org/W87609089, https://openalex.org/W3024737167, https://openalex.org/W2414561716, https://openalex.org/W3161199934, https://openalex.org/W4313854656, https://openalex.org/W2303855011, https://openalex.org/W2312326526, https://openalex.org/W4212966960, https://openalex.org/W2412578866 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1909.07267 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1909.07267 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1909.07267 |
| primary_location.id | pmh:oai:arXiv.org:1909.07267 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1909.07267 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1909.07267 |
| publication_date | 2019-09-16 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2085261163, https://openalex.org/W2892028890, https://openalex.org/W1619178479, https://openalex.org/W3102327032, https://openalex.org/W2012592962, https://openalex.org/W2147238549, https://openalex.org/W2139114878, https://openalex.org/W2160643963, https://openalex.org/W2179042386, https://openalex.org/W2770683484, https://openalex.org/W2131846894, https://openalex.org/W1650975994, https://openalex.org/W2580440899, https://openalex.org/W2884962765, https://openalex.org/W2117228865, https://openalex.org/W1532257412, https://openalex.org/W2115579991, https://openalex.org/W2144824356, https://openalex.org/W2910489334, https://openalex.org/W2099606917, https://openalex.org/W612478963, https://openalex.org/W1972671602, https://openalex.org/W1989484209, https://openalex.org/W2474281075, https://openalex.org/W2415131061, https://openalex.org/W2558027072, https://openalex.org/W2565998037, https://openalex.org/W3004363006 |
| referenced_works_count | 28 |
| abstract_inverted_index.a | 3 |
| abstract_inverted_index.2D | 75, 79, 143 |
| abstract_inverted_index.3D | 59, 68, 101, 137 |
| abstract_inverted_index.In | 47 |
| abstract_inverted_index.an | 52, 104 |
| abstract_inverted_index.be | 44 |
| abstract_inverted_index.by | 22 |
| abstract_inverted_index.in | 14, 94 |
| abstract_inverted_index.is | 2 |
| abstract_inverted_index.of | 6, 135 |
| abstract_inverted_index.on | 124 |
| abstract_inverted_index.to | 37, 110 |
| abstract_inverted_index.us | 109 |
| abstract_inverted_index.we | 50, 128 |
| abstract_inverted_index.and | 9, 41, 87, 133 |
| abstract_inverted_index.are | 20, 35, 70 |
| abstract_inverted_index.can | 43 |
| abstract_inverted_index.for | 58, 65, 114, 139 |
| abstract_inverted_index.may | 89 |
| abstract_inverted_index.the | 24, 130 |
| abstract_inverted_index.use | 111 |
| abstract_inverted_index.SLAM | 16, 92 |
| abstract_inverted_index.also | 42 |
| abstract_inverted_index.core | 4 |
| abstract_inverted_index.cues | 77 |
| abstract_inverted_index.from | 62 |
| abstract_inverted_index.high | 118 |
| abstract_inverted_index.more | 72 |
| abstract_inverted_index.over | 142 |
| abstract_inverted_index.such | 33 |
| abstract_inverted_index.than | 74 |
| abstract_inverted_index.this | 48, 88 |
| abstract_inverted_index.with | 103, 117 |
| abstract_inverted_index.LiDAR | 56, 112 |
| abstract_inverted_index.Place | 0 |
| abstract_inverted_index.place | 66, 115, 140 |
| abstract_inverted_index.these | 30 |
| abstract_inverted_index.using | 136 |
| abstract_inverted_index.which | 107 |
| abstract_inverted_index.(SLAM) | 11 |
| abstract_inverted_index.(e.g., | 78, 84 |
| abstract_inverted_index.change | 40 |
| abstract_inverted_index.images | 28 |
| abstract_inverted_index.paper, | 49 |
| abstract_inverted_index.places | 19 |
| abstract_inverted_index.points | 60, 69, 102, 138 |
| abstract_inverted_index.scale, | 106 |
| abstract_inverted_index.visual | 15, 38, 76, 91 |
| abstract_inverted_index.Mapping | 10 |
| abstract_inverted_index.Through | 121 |
| abstract_inverted_index.against | 81 |
| abstract_inverted_index.benefit | 90 |
| abstract_inverted_index.between | 27 |
| abstract_inverted_index.changes | 83 |
| abstract_inverted_index.enables | 108 |
| abstract_inverted_index.propose | 51 |
| abstract_inverted_index.systems | 93 |
| abstract_inverted_index.However, | 32 |
| abstract_inverted_index.absolute | 105 |
| abstract_inverted_index.adapting | 55 |
| abstract_inverted_index.approach | 54 |
| abstract_inverted_index.methods. | 144 |
| abstract_inverted_index.obtained | 61 |
| abstract_inverted_index.odometry | 64, 99 |
| abstract_inverted_index.reliable | 73 |
| abstract_inverted_index.standard | 125 |
| abstract_inverted_index.systems, | 17 |
| abstract_inverted_index.variable | 85 |
| abstract_inverted_index.accuracy, | 131 |
| abstract_inverted_index.benchmark | 126 |
| abstract_inverted_index.component | 5 |
| abstract_inverted_index.datasets, | 127 |
| abstract_inverted_index.extensive | 122 |
| abstract_inverted_index.features) | 80 |
| abstract_inverted_index.generates | 100 |
| abstract_inverted_index.long-term | 95 |
| abstract_inverted_index.measuring | 23 |
| abstract_inverted_index.sensitive | 36 |
| abstract_inverted_index.appearance | 25, 39 |
| abstract_inverted_index.approaches | 34 |
| abstract_inverted_index.deployment | 96 |
| abstract_inverted_index.expensive. | 46 |
| abstract_inverted_index.locations. | 31 |
| abstract_inverted_index.recognized | 21 |
| abstract_inverted_index.robustness | 134 |
| abstract_inverted_index.scenarios. | 97 |
| abstract_inverted_index.similarity | 26 |
| abstract_inverted_index.algorithms. | 12 |
| abstract_inverted_index.alternative | 53 |
| abstract_inverted_index.demonstrate | 129 |
| abstract_inverted_index.descriptors | 57, 113 |
| abstract_inverted_index.efficiency, | 132 |
| abstract_inverted_index.efficiency. | 120 |
| abstract_inverted_index.evaluations | 123 |
| abstract_inverted_index.potentially | 71 |
| abstract_inverted_index.recognition | 1, 116, 141 |
| abstract_inverted_index.Localization | 8 |
| abstract_inverted_index.Particularly | 13 |
| abstract_inverted_index.Simultaneous | 7 |
| abstract_inverted_index.recognition. | 67 |
| abstract_inverted_index.representing | 29 |
| abstract_inverted_index.Stereo-visual | 98 |
| abstract_inverted_index.computational | 119 |
| abstract_inverted_index.environmental | 82 |
| abstract_inverted_index.illumination) | 86 |
| abstract_inverted_index.stereo-visual | 63 |
| abstract_inverted_index.computationally | 45 |
| abstract_inverted_index.previously-visited | 18 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |