A Fast Convergent Ordered-Subsets Algorithm With Subiteration-Dependent Preconditioners for PET Image Reconstruction Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1109/tmi.2022.3181813
We investigated the imaging performance of a fast convergent ordered-subsets algorithm with subiteration-dependent preconditioners (SDPs) for positron emission tomography (PET) image reconstruction. In particular, we considered the use of SDP with the block sequential regularized expectation maximization (BSREM) approach with the relative difference prior (RDP) regularizer due to its prior clinical adaptation by vendors. Because the RDP regularization promotes smoothness in the reconstructed image, the directions of the gradients in smooth areas more accurately point toward the objective function's minimizer than those in variable areas. Motivated by this observation, two SDPs have been designed to increase iteration step-sizes in the smooth areas and reduce iteration step-sizes in the variable areas relative to a conventional expectation maximization preconditioner. The momentum technique used for convergence acceleration can be viewed as a special case of SDP. We have proved the global convergence of SDP-BSREM algorithms by assuming certain characteristics of the preconditioner. By means of numerical experiments using both simulated and clinical PET data, we have shown that the SDP-BSREM algorithms substantially improve the convergence rate, as compared to conventional BSREM and a vendor's implementation as Q.Clear. Specifically, SDP-BSREM algorithms converge 35%-50% faster in reaching the same objective function value than conventional BSREM and commercial Q.Clear algorithms. Moreover, we showed in phantoms with hot, cold and background regions that the SDP-BSREM algorithms approached the values of a highly converged reference image faster than conventional BSREM and commercial Q.Clear algorithms.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/tmi.2022.3181813
- OA Status
- green
- Cited By
- 6
- References
- 42
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3214032575
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3214032575Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/tmi.2022.3181813Digital Object Identifier
- Title
-
A Fast Convergent Ordered-Subsets Algorithm With Subiteration-Dependent Preconditioners for PET Image ReconstructionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-06-09Full publication date if available
- Authors
-
Jianfeng Guo, C. Ross Schmidtlein, Andrzej Król, Si Li, Yizun Lin, Sangtae Ahn, C.W. Stearns, Yuesheng XuList of authors in order
- Landing page
-
https://doi.org/10.1109/tmi.2022.3181813Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.ncbi.nlm.nih.gov/pmc/articles/9810102Direct OA link when available
- Concepts
-
Preconditioner, Algorithm, Regularization (linguistics), Mathematics, Iterative reconstruction, Mathematical optimization, Computer science, Expectation–maximization algorithm, Iterative method, Artificial intelligence, Statistics, Maximum likelihoodTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
42Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3214032575 |
|---|---|
| doi | https://doi.org/10.1109/tmi.2022.3181813 |
| ids.doi | https://doi.org/10.1109/tmi.2022.3181813 |
| ids.mag | 3214032575 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/35679379 |
| ids.openalex | https://openalex.org/W3214032575 |
| fwci | 1.17149707 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D014057 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Tomography, X-Ray Computed |
| mesh[1].qualifier_ui | Q000379 |
| mesh[1].descriptor_ui | D007091 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | methods |
| mesh[1].descriptor_name | Image Processing, Computer-Assisted |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D049268 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Positron-Emission Tomography |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D000465 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Algorithms |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D019047 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Phantoms, Imaging |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D014057 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Tomography, X-Ray Computed |
| mesh[6].qualifier_ui | Q000379 |
| mesh[6].descriptor_ui | D007091 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | methods |
| mesh[6].descriptor_name | Image Processing, Computer-Assisted |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D049268 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Positron-Emission Tomography |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D000465 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Algorithms |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D019047 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Phantoms, Imaging |
| type | article |
| title | A Fast Convergent Ordered-Subsets Algorithm With Subiteration-Dependent Preconditioners for PET Image Reconstruction |
| awards[0].id | https://openalex.org/G8094914596 |
| awards[0].funder_id | https://openalex.org/F4320335787 |
| awards[0].display_name | |
| awards[0].funder_award_id | 21620352 |
| awards[0].funder_display_name | Fundamental Research Funds for the Central Universities |
| awards[1].id | https://openalex.org/G2332028470 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 11771464 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| awards[2].id | https://openalex.org/G7795818187 |
| awards[2].funder_id | https://openalex.org/F4320337111 |
| awards[2].display_name | |
| awards[2].funder_award_id | 2021A1515110541 |
| awards[2].funder_display_name | Basic and Applied Basic Research Foundation of Guangdong Province |
| awards[3].id | https://openalex.org/G6469444137 |
| awards[3].funder_id | https://openalex.org/F4320337351 |
| awards[3].display_name | |
| awards[3].funder_award_id | R21CA263876 |
| awards[3].funder_display_name | National Cancer Institute |
| awards[4].id | https://openalex.org/G7564606733 |
| awards[4].funder_id | https://openalex.org/F4320330330 |
| awards[4].display_name | |
| awards[4].funder_award_id | 2021007 |
| awards[4].funder_display_name | Guangdong Province Key Laboratory of Computational Science |
| awards[5].id | https://openalex.org/G7015792876 |
| awards[5].funder_id | https://openalex.org/F4320306076 |
| awards[5].display_name | |
| awards[5].funder_award_id | DMS-1912958 |
| awards[5].funder_display_name | National Science Foundation |
| awards[6].id | https://openalex.org/G3238581596 |
| awards[6].funder_id | https://openalex.org/F4320321921 |
| awards[6].display_name | |
| awards[6].funder_award_id | 2022A1515012379 |
| awards[6].funder_display_name | Natural Science Foundation of Guangdong Province |
| awards[7].id | https://openalex.org/G7223463451 |
| awards[7].funder_id | https://openalex.org/F4320332161 |
| awards[7].display_name | |
| awards[7].funder_award_id | R21CA263876 |
| awards[7].funder_display_name | National Institutes of Health |
| biblio.issue | 11 |
| biblio.volume | 41 |
| biblio.last_page | 3300 |
| biblio.first_page | 3289 |
| topics[0].id | https://openalex.org/T10522 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Medical Imaging Techniques and Applications |
| topics[1].id | https://openalex.org/T10378 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9980999827384949 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Advanced MRI Techniques and Applications |
| topics[2].id | https://openalex.org/T10500 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9962000250816345 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2206 |
| topics[2].subfield.display_name | Computational Mechanics |
| topics[2].display_name | Sparse and Compressive Sensing Techniques |
| funders[0].id | https://openalex.org/F4320306076 |
| funders[0].ror | https://ror.org/021nxhr62 |
| funders[0].display_name | National Science Foundation |
| funders[1].id | https://openalex.org/F4320321001 |
| funders[1].ror | https://ror.org/01h0zpd94 |
| funders[1].display_name | National Natural Science Foundation of China |
| funders[2].id | https://openalex.org/F4320321921 |
| funders[2].ror | |
| funders[2].display_name | Natural Science Foundation of Guangdong Province |
| funders[3].id | https://openalex.org/F4320330330 |
| funders[3].ror | |
| funders[3].display_name | Guangdong Province Key Laboratory of Computational Science |
| funders[4].id | https://openalex.org/F4320332161 |
| funders[4].ror | https://ror.org/01cwqze88 |
| funders[4].display_name | National Institutes of Health |
| funders[5].id | https://openalex.org/F4320335787 |
| funders[5].ror | |
| funders[5].display_name | Fundamental Research Funds for the Central Universities |
| funders[6].id | https://openalex.org/F4320337111 |
| funders[6].ror | |
| funders[6].display_name | Basic and Applied Basic Research Foundation of Guangdong Province |
| funders[7].id | https://openalex.org/F4320337351 |
| funders[7].ror | https://ror.org/040gcmg81 |
| funders[7].display_name | National Cancer Institute |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C167431342 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8017957210540771 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1754327 |
| concepts[0].display_name | Preconditioner |
| concepts[1].id | https://openalex.org/C11413529 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7201586365699768 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[1].display_name | Algorithm |
| concepts[2].id | https://openalex.org/C2776135515 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6404669880867004 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17143721 |
| concepts[2].display_name | Regularization (linguistics) |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5389173626899719 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C141379421 |
| concepts[4].level | 2 |
| concepts[4].score | 0.494973361492157 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q6094427 |
| concepts[4].display_name | Iterative reconstruction |
| concepts[5].id | https://openalex.org/C126255220 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4351693391799927 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[5].display_name | Mathematical optimization |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.41731345653533936 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C182081679 |
| concepts[7].level | 3 |
| concepts[7].score | 0.416110634803772 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1275153 |
| concepts[7].display_name | Expectation–maximization algorithm |
| concepts[8].id | https://openalex.org/C159694833 |
| concepts[8].level | 2 |
| concepts[8].score | 0.326913058757782 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2321565 |
| concepts[8].display_name | Iterative method |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.1702875792980194 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C105795698 |
| concepts[10].level | 1 |
| concepts[10].score | 0.07713577151298523 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[10].display_name | Statistics |
| concepts[11].id | https://openalex.org/C49781872 |
| concepts[11].level | 2 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1045555 |
| concepts[11].display_name | Maximum likelihood |
| keywords[0].id | https://openalex.org/keywords/preconditioner |
| keywords[0].score | 0.8017957210540771 |
| keywords[0].display_name | Preconditioner |
| keywords[1].id | https://openalex.org/keywords/algorithm |
| keywords[1].score | 0.7201586365699768 |
| keywords[1].display_name | Algorithm |
| keywords[2].id | https://openalex.org/keywords/regularization |
| keywords[2].score | 0.6404669880867004 |
| keywords[2].display_name | Regularization (linguistics) |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.5389173626899719 |
| keywords[3].display_name | Mathematics |
| keywords[4].id | https://openalex.org/keywords/iterative-reconstruction |
| keywords[4].score | 0.494973361492157 |
| keywords[4].display_name | Iterative reconstruction |
| keywords[5].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[5].score | 0.4351693391799927 |
| keywords[5].display_name | Mathematical optimization |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.41731345653533936 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/expectation–maximization-algorithm |
| keywords[7].score | 0.416110634803772 |
| keywords[7].display_name | Expectation–maximization algorithm |
| keywords[8].id | https://openalex.org/keywords/iterative-method |
| keywords[8].score | 0.326913058757782 |
| keywords[8].display_name | Iterative method |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.1702875792980194 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/statistics |
| keywords[10].score | 0.07713577151298523 |
| keywords[10].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.1109/tmi.2022.3181813 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S58069681 |
| locations[0].source.issn | 0278-0062, 1558-254X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0278-0062 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEEE Transactions on Medical Imaging |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Transactions on Medical Imaging |
| locations[0].landing_page_url | https://doi.org/10.1109/tmi.2022.3181813 |
| locations[1].id | pmid:35679379 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | IEEE transactions on medical imaging |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/35679379 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:9810102 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | IEEE Trans Med Imaging |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9810102 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5027986102 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2527-9939 |
| authorships[0].author.display_name | Jianfeng Guo |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I157773358 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China |
| authorships[0].institutions[0].id | https://openalex.org/I157773358 |
| authorships[0].institutions[0].ror | https://ror.org/0064kty71 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I157773358 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Sun Yat-sen University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jianfeng Guo |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China |
| authorships[1].author.id | https://openalex.org/A5011869870 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0485-3601 |
| authorships[1].author.display_name | C. Ross Schmidtlein |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1334819555 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA |
| authorships[1].institutions[0].id | https://openalex.org/I1334819555 |
| authorships[1].institutions[0].ror | https://ror.org/02yrq0923 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I1334819555 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Memorial Sloan Kettering Cancer Center |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | C. Ross Schmidtlein |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA |
| authorships[2].author.id | https://openalex.org/A5042768449 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2669-4704 |
| authorships[2].author.display_name | Andrzej Król |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I20388574 |
| authorships[2].affiliations[0].raw_affiliation_string | Departments of Radiology and Pharmacology, SUNY Upstate Medical University, Syracuse, NY, USA |
| authorships[2].institutions[0].id | https://openalex.org/I20388574 |
| authorships[2].institutions[0].ror | https://ror.org/040kfrw16 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I20388574 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | SUNY Upstate Medical University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Andrzej Krol |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Departments of Radiology and Pharmacology, SUNY Upstate Medical University, Syracuse, NY, USA |
| authorships[3].author.id | https://openalex.org/A5100391306 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5590-7759 |
| authorships[3].author.display_name | Si Li |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I139024713 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, China |
| authorships[3].institutions[0].id | https://openalex.org/I139024713 |
| authorships[3].institutions[0].ror | https://ror.org/04azbjn80 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I139024713 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Guangdong University of Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Si Li |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, China |
| authorships[4].author.id | https://openalex.org/A5077925676 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1400-278X |
| authorships[4].author.display_name | Yizun Lin |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I159948400 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Mathematics, College of Information Science and Technology, Jinan University, Guangzhou, China |
| authorships[4].institutions[0].id | https://openalex.org/I159948400 |
| authorships[4].institutions[0].ror | https://ror.org/02xe5ns62 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I159948400 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Jinan University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yizun Lin |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Mathematics, College of Information Science and Technology, Jinan University, Guangzhou, China |
| authorships[5].author.id | https://openalex.org/A5059008417 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7252-2607 |
| authorships[5].author.display_name | Sangtae Ahn |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210134512 |
| authorships[5].affiliations[0].raw_affiliation_string | GE Research, Niskayuna, NY, USA |
| authorships[5].institutions[0].id | https://openalex.org/I4210134512 |
| authorships[5].institutions[0].ror | https://ror.org/03e06qt98 |
| authorships[5].institutions[0].type | company |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210134512 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | GE Global Research (United States) |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Sangtae Ahn |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | GE Research, Niskayuna, NY, USA |
| authorships[6].author.id | https://openalex.org/A5000434695 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-7074-6663 |
| authorships[6].author.display_name | C.W. Stearns |
| authorships[6].affiliations[0].raw_affiliation_string | GE Healthcare, Waukesha, WI, USA |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Charles Stearns |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | GE Healthcare, Waukesha, WI, USA |
| authorships[7].author.id | https://openalex.org/A5026572582 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-3965-3087 |
| authorships[7].author.display_name | Yuesheng Xu |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I81365321 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA, USA |
| authorships[7].institutions[0].id | https://openalex.org/I81365321 |
| authorships[7].institutions[0].ror | https://ror.org/04zjtrb98 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I81365321 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Old Dominion University |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Yuesheng Xu |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9810102 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Fast Convergent Ordered-Subsets Algorithm With Subiteration-Dependent Preconditioners for PET Image Reconstruction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10522 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Medical Imaging Techniques and Applications |
| related_works | https://openalex.org/W4285325102, https://openalex.org/W2358739842, https://openalex.org/W2185794209, https://openalex.org/W2138831083, https://openalex.org/W1844423250, https://openalex.org/W2128367053, https://openalex.org/W2107386309, https://openalex.org/W2545869789, https://openalex.org/W2141090006, https://openalex.org/W1556040568 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:pubmedcentral.nih.gov:9810102 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764455111 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PubMed Central |
| best_oa_location.source.host_organization | https://openalex.org/I1299303238 |
| best_oa_location.source.host_organization_name | National Institutes of Health |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | IEEE Trans Med Imaging |
| best_oa_location.landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9810102 |
| primary_location.id | doi:10.1109/tmi.2022.3181813 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S58069681 |
| primary_location.source.issn | 0278-0062, 1558-254X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0278-0062 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEEE Transactions on Medical Imaging |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Transactions on Medical Imaging |
| primary_location.landing_page_url | https://doi.org/10.1109/tmi.2022.3181813 |
| publication_date | 2022-06-09 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2069629287, https://openalex.org/W6636952455, https://openalex.org/W2221881442, https://openalex.org/W2154744699, https://openalex.org/W2130217200, https://openalex.org/W1647554959, https://openalex.org/W1970997001, https://openalex.org/W2135468550, https://openalex.org/W2128456478, https://openalex.org/W2154852444, https://openalex.org/W2776756710, https://openalex.org/W2103559027, https://openalex.org/W2000594266, https://openalex.org/W6607493213, https://openalex.org/W2052419043, https://openalex.org/W2496899299, https://openalex.org/W2092663520, https://openalex.org/W2045995543, https://openalex.org/W1511443099, https://openalex.org/W2109812509, https://openalex.org/W2017162022, https://openalex.org/W2036837878, https://openalex.org/W2160260190, https://openalex.org/W2918100930, https://openalex.org/W2888335855, https://openalex.org/W1967581593, https://openalex.org/W6761030284, https://openalex.org/W2100556411, https://openalex.org/W2900779353, https://openalex.org/W2048417186, https://openalex.org/W2005277084, https://openalex.org/W2609292681, https://openalex.org/W2075119726, https://openalex.org/W2139518045, https://openalex.org/W6682466571, https://openalex.org/W2903184369, https://openalex.org/W2124541940, https://openalex.org/W3104999358, https://openalex.org/W186085407, https://openalex.org/W1568288633, https://openalex.org/W2936995161, https://openalex.org/W4255034812 |
| referenced_works_count | 42 |
| abstract_inverted_index.a | 6, 112, 128, 179, 223 |
| abstract_inverted_index.By | 149 |
| abstract_inverted_index.In | 22 |
| abstract_inverted_index.We | 0, 133 |
| abstract_inverted_index.as | 127, 173, 182 |
| abstract_inverted_index.be | 125 |
| abstract_inverted_index.by | 52, 86, 142 |
| abstract_inverted_index.in | 60, 69, 82, 98, 106, 190, 207 |
| abstract_inverted_index.of | 5, 28, 66, 131, 139, 146, 151, 222 |
| abstract_inverted_index.to | 47, 94, 111, 175 |
| abstract_inverted_index.we | 24, 161, 205 |
| abstract_inverted_index.PET | 159 |
| abstract_inverted_index.RDP | 56 |
| abstract_inverted_index.SDP | 29 |
| abstract_inverted_index.The | 117 |
| abstract_inverted_index.and | 102, 157, 178, 200, 212, 232 |
| abstract_inverted_index.can | 124 |
| abstract_inverted_index.due | 46 |
| abstract_inverted_index.for | 15, 121 |
| abstract_inverted_index.its | 48 |
| abstract_inverted_index.the | 2, 26, 31, 40, 55, 61, 64, 67, 76, 99, 107, 136, 147, 165, 170, 192, 216, 220 |
| abstract_inverted_index.two | 89 |
| abstract_inverted_index.use | 27 |
| abstract_inverted_index.SDP. | 132 |
| abstract_inverted_index.SDPs | 90 |
| abstract_inverted_index.been | 92 |
| abstract_inverted_index.both | 155 |
| abstract_inverted_index.case | 130 |
| abstract_inverted_index.cold | 211 |
| abstract_inverted_index.fast | 7 |
| abstract_inverted_index.have | 91, 134, 162 |
| abstract_inverted_index.hot, | 210 |
| abstract_inverted_index.more | 72 |
| abstract_inverted_index.same | 193 |
| abstract_inverted_index.than | 80, 197, 229 |
| abstract_inverted_index.that | 164, 215 |
| abstract_inverted_index.this | 87 |
| abstract_inverted_index.used | 120 |
| abstract_inverted_index.with | 11, 30, 39, 209 |
| abstract_inverted_index.(PET) | 19 |
| abstract_inverted_index.(RDP) | 44 |
| abstract_inverted_index.BSREM | 177, 199, 231 |
| abstract_inverted_index.areas | 71, 101, 109 |
| abstract_inverted_index.block | 32 |
| abstract_inverted_index.data, | 160 |
| abstract_inverted_index.image | 20, 227 |
| abstract_inverted_index.means | 150 |
| abstract_inverted_index.point | 74 |
| abstract_inverted_index.prior | 43, 49 |
| abstract_inverted_index.rate, | 172 |
| abstract_inverted_index.shown | 163 |
| abstract_inverted_index.those | 81 |
| abstract_inverted_index.using | 154 |
| abstract_inverted_index.value | 196 |
| abstract_inverted_index.(SDPs) | 14 |
| abstract_inverted_index.areas. | 84 |
| abstract_inverted_index.faster | 189, 228 |
| abstract_inverted_index.global | 137 |
| abstract_inverted_index.highly | 224 |
| abstract_inverted_index.image, | 63 |
| abstract_inverted_index.proved | 135 |
| abstract_inverted_index.reduce | 103 |
| abstract_inverted_index.showed | 206 |
| abstract_inverted_index.smooth | 70, 100 |
| abstract_inverted_index.toward | 75 |
| abstract_inverted_index.values | 221 |
| abstract_inverted_index.viewed | 126 |
| abstract_inverted_index.(BSREM) | 37 |
| abstract_inverted_index.35%-50% | 188 |
| abstract_inverted_index.Because | 54 |
| abstract_inverted_index.Q.Clear | 202, 234 |
| abstract_inverted_index.certain | 144 |
| abstract_inverted_index.imaging | 3 |
| abstract_inverted_index.improve | 169 |
| abstract_inverted_index.regions | 214 |
| abstract_inverted_index.special | 129 |
| abstract_inverted_index.Q.Clear. | 183 |
| abstract_inverted_index.approach | 38 |
| abstract_inverted_index.assuming | 143 |
| abstract_inverted_index.clinical | 50, 158 |
| abstract_inverted_index.compared | 174 |
| abstract_inverted_index.converge | 187 |
| abstract_inverted_index.designed | 93 |
| abstract_inverted_index.emission | 17 |
| abstract_inverted_index.function | 195 |
| abstract_inverted_index.increase | 95 |
| abstract_inverted_index.momentum | 118 |
| abstract_inverted_index.phantoms | 208 |
| abstract_inverted_index.positron | 16 |
| abstract_inverted_index.promotes | 58 |
| abstract_inverted_index.reaching | 191 |
| abstract_inverted_index.relative | 41, 110 |
| abstract_inverted_index.variable | 83, 108 |
| abstract_inverted_index.vendor's | 180 |
| abstract_inverted_index.vendors. | 53 |
| abstract_inverted_index.Moreover, | 204 |
| abstract_inverted_index.Motivated | 85 |
| abstract_inverted_index.SDP-BSREM | 140, 166, 185, 217 |
| abstract_inverted_index.algorithm | 10 |
| abstract_inverted_index.converged | 225 |
| abstract_inverted_index.gradients | 68 |
| abstract_inverted_index.iteration | 96, 104 |
| abstract_inverted_index.minimizer | 79 |
| abstract_inverted_index.numerical | 152 |
| abstract_inverted_index.objective | 77, 194 |
| abstract_inverted_index.reference | 226 |
| abstract_inverted_index.simulated | 156 |
| abstract_inverted_index.technique | 119 |
| abstract_inverted_index.accurately | 73 |
| abstract_inverted_index.adaptation | 51 |
| abstract_inverted_index.algorithms | 141, 167, 186, 218 |
| abstract_inverted_index.approached | 219 |
| abstract_inverted_index.background | 213 |
| abstract_inverted_index.commercial | 201, 233 |
| abstract_inverted_index.considered | 25 |
| abstract_inverted_index.convergent | 8 |
| abstract_inverted_index.difference | 42 |
| abstract_inverted_index.directions | 65 |
| abstract_inverted_index.function's | 78 |
| abstract_inverted_index.sequential | 33 |
| abstract_inverted_index.smoothness | 59 |
| abstract_inverted_index.step-sizes | 97, 105 |
| abstract_inverted_index.tomography | 18 |
| abstract_inverted_index.algorithms. | 203, 235 |
| abstract_inverted_index.convergence | 122, 138, 171 |
| abstract_inverted_index.expectation | 35, 114 |
| abstract_inverted_index.experiments | 153 |
| abstract_inverted_index.particular, | 23 |
| abstract_inverted_index.performance | 4 |
| abstract_inverted_index.regularized | 34 |
| abstract_inverted_index.regularizer | 45 |
| abstract_inverted_index.acceleration | 123 |
| abstract_inverted_index.conventional | 113, 176, 198, 230 |
| abstract_inverted_index.investigated | 1 |
| abstract_inverted_index.maximization | 36, 115 |
| abstract_inverted_index.observation, | 88 |
| abstract_inverted_index.Specifically, | 184 |
| abstract_inverted_index.reconstructed | 62 |
| abstract_inverted_index.substantially | 168 |
| abstract_inverted_index.implementation | 181 |
| abstract_inverted_index.regularization | 57 |
| abstract_inverted_index.characteristics | 145 |
| abstract_inverted_index.ordered-subsets | 9 |
| abstract_inverted_index.preconditioner. | 116, 148 |
| abstract_inverted_index.preconditioners | 13 |
| abstract_inverted_index.reconstruction. | 21 |
| abstract_inverted_index.subiteration-dependent | 12 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.71243831 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |