A fast CU partition algorithm of ERP 360‐degree video based on deep learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1049/ell2.70129
This article proposes a deep‐learning‐based fast coding unit (CU) partition algorithm to reduce encoding time of equirectangular projection (ERP) 360‐degree videos in versatile video coding. First, an ERP 360‐degree dataset with ERP latitude characteristics and quantitative parameter characteristics is established. Then, a lightweight prediction partition convolutional neural network is designed to predict the partition probability of 44 CU edges in 3232 luminance CU. Finally, an intra prediction decision‐making scheme is developed to reduce the number of candidate modes of CUs with size equal to or smaller than 3232, thereby achieving fast encoding. Experimental results show that the proposed method saves 58.51% of encoding time in All Intra configuration and only increases Bjontegaard delta bit‐rate by 1.39%.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1049/ell2.70129
- OA Status
- gold
- Cited By
- 1
- References
- 8
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405988324
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405988324Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1049/ell2.70129Digital Object Identifier
- Title
-
A fast CU partition algorithm of ERP 360‐degree video based on deep learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Hai Xiang, Fen Chen, Zongju Peng, Lian HuangList of authors in order
- Landing page
-
https://doi.org/10.1049/ell2.70129Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1049/ell2.70129Direct OA link when available
- Concepts
-
Partition (number theory), Degree (music), Computer science, Algorithm, Artificial intelligence, Deep learning, Pattern recognition (psychology), Mathematics, Combinatorics, Acoustics, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
8Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405988324 |
|---|---|
| doi | https://doi.org/10.1049/ell2.70129 |
| ids.doi | https://doi.org/10.1049/ell2.70129 |
| ids.openalex | https://openalex.org/W4405988324 |
| fwci | 4.77340731 |
| type | article |
| title | A fast CU partition algorithm of ERP 360‐degree video based on deep learning |
| awards[0].id | https://openalex.org/G1847301984 |
| awards[0].funder_id | https://openalex.org/F4320323172 |
| awards[0].display_name | |
| awards[0].funder_award_id | CSTB2022NSCQ‐MSX0873 |
| awards[0].funder_display_name | Natural Science Foundation of Chongqing |
| awards[1].id | https://openalex.org/G7800280450 |
| awards[1].funder_id | https://openalex.org/F4320323172 |
| awards[1].display_name | |
| awards[1].funder_award_id | cstc2021jcyjmsxmX0411 |
| awards[1].funder_display_name | Natural Science Foundation of Chongqing |
| awards[2].id | https://openalex.org/G4641434974 |
| awards[2].funder_id | https://openalex.org/F4320321001 |
| awards[2].display_name | |
| awards[2].funder_award_id | 62371081 |
| awards[2].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 1 |
| biblio.volume | 61 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10531 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9968000054359436 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Vision and Imaging |
| topics[1].id | https://openalex.org/T11105 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9962000250816345 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Image Processing Techniques |
| topics[2].id | https://openalex.org/T11165 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9944999814033508 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Image and Video Quality Assessment |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320323172 |
| funders[1].ror | https://ror.org/01h0zpd94 |
| funders[1].display_name | Natural Science Foundation of Chongqing |
| is_xpac | False |
| apc_list.value | 2200 |
| apc_list.currency | USD |
| apc_list.value_usd | 2200 |
| apc_paid.value | 2200 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2200 |
| concepts[0].id | https://openalex.org/C42812 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6889605522155762 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1082910 |
| concepts[0].display_name | Partition (number theory) |
| concepts[1].id | https://openalex.org/C2775997480 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6691604852676392 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q586277 |
| concepts[1].display_name | Degree (music) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6126032471656799 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C11413529 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4995613098144531 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[3].display_name | Algorithm |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.48586007952690125 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C108583219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4228537082672119 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep learning |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.3614961802959442 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.20475760102272034 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C114614502 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0839550793170929 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[8].display_name | Combinatorics |
| concepts[9].id | https://openalex.org/C24890656 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q82811 |
| concepts[9].display_name | Acoustics |
| concepts[10].id | https://openalex.org/C121332964 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[10].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/partition |
| keywords[0].score | 0.6889605522155762 |
| keywords[0].display_name | Partition (number theory) |
| keywords[1].id | https://openalex.org/keywords/degree |
| keywords[1].score | 0.6691604852676392 |
| keywords[1].display_name | Degree (music) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6126032471656799 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/algorithm |
| keywords[3].score | 0.4995613098144531 |
| keywords[3].display_name | Algorithm |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.48586007952690125 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/deep-learning |
| keywords[5].score | 0.4228537082672119 |
| keywords[5].display_name | Deep learning |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.3614961802959442 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.20475760102272034 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/combinatorics |
| keywords[8].score | 0.0839550793170929 |
| keywords[8].display_name | Combinatorics |
| language | en |
| locations[0].id | doi:10.1049/ell2.70129 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S149016011 |
| locations[0].source.issn | 0013-5194, 1350-911X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0013-5194 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Electronics Letters |
| locations[0].source.host_organization | https://openalex.org/P4310311714 |
| locations[0].source.host_organization_name | Institution of Engineering and Technology |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311714 |
| locations[0].source.host_organization_lineage_names | Institution of Engineering and Technology |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Electronics Letters |
| locations[0].landing_page_url | https://doi.org/10.1049/ell2.70129 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5110368381 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Hai Xiang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I50632499 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing, China |
| authorships[0].institutions[0].id | https://openalex.org/I50632499 |
| authorships[0].institutions[0].ror | https://ror.org/04vgbd477 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I50632499 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Chongqing University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hai Xiang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing, China |
| authorships[1].author.id | https://openalex.org/A5055084879 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3921-9152 |
| authorships[1].author.display_name | Fen Chen |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I50632499 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing, China |
| authorships[1].institutions[0].id | https://openalex.org/I50632499 |
| authorships[1].institutions[0].ror | https://ror.org/04vgbd477 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I50632499 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Chongqing University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Fen Chen |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing, China |
| authorships[2].author.id | https://openalex.org/A5043258671 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8286-538X |
| authorships[2].author.display_name | Zongju Peng |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I50632499 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing, China |
| authorships[2].institutions[0].id | https://openalex.org/I50632499 |
| authorships[2].institutions[0].ror | https://ror.org/04vgbd477 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I50632499 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Chongqing University of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zongju Peng |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing, China |
| authorships[3].author.id | https://openalex.org/A5110226584 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Lian Huang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I50632499 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing, China |
| authorships[3].institutions[0].id | https://openalex.org/I50632499 |
| authorships[3].institutions[0].ror | https://ror.org/04vgbd477 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I50632499 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Chongqing University of Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Lian Huang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1049/ell2.70129 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A fast CU partition algorithm of ERP 360‐degree video based on deep learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10531 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9968000054359436 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Vision and Imaging |
| related_works | https://openalex.org/W2051487156, https://openalex.org/W2073681303, https://openalex.org/W2399035783, https://openalex.org/W3161230432, https://openalex.org/W4375867731, https://openalex.org/W4367190712, https://openalex.org/W2168900540, https://openalex.org/W1487201914, https://openalex.org/W4301429470, https://openalex.org/W280458463 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1049/ell2.70129 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S149016011 |
| best_oa_location.source.issn | 0013-5194, 1350-911X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0013-5194 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Electronics Letters |
| best_oa_location.source.host_organization | https://openalex.org/P4310311714 |
| best_oa_location.source.host_organization_name | Institution of Engineering and Technology |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311714 |
| best_oa_location.source.host_organization_lineage_names | Institution of Engineering and Technology |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Electronics Letters |
| best_oa_location.landing_page_url | https://doi.org/10.1049/ell2.70129 |
| primary_location.id | doi:10.1049/ell2.70129 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S149016011 |
| primary_location.source.issn | 0013-5194, 1350-911X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0013-5194 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Electronics Letters |
| primary_location.source.host_organization | https://openalex.org/P4310311714 |
| primary_location.source.host_organization_name | Institution of Engineering and Technology |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311714 |
| primary_location.source.host_organization_lineage_names | Institution of Engineering and Technology |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Electronics Letters |
| primary_location.landing_page_url | https://doi.org/10.1049/ell2.70129 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3202918664, https://openalex.org/W2987291011, https://openalex.org/W4287847199, https://openalex.org/W4377291761, https://openalex.org/W4386597957, https://openalex.org/W3035784627, https://openalex.org/W3133998139, https://openalex.org/W4289387930 |
| referenced_works_count | 8 |
| abstract_inverted_index.a | 4, 42 |
| abstract_inverted_index.44 | 57 |
| abstract_inverted_index.CU | 58 |
| abstract_inverted_index.an | 27, 65 |
| abstract_inverted_index.by | 115 |
| abstract_inverted_index.in | 22, 60, 105 |
| abstract_inverted_index.is | 39, 49, 70 |
| abstract_inverted_index.of | 16, 56, 76, 79, 102 |
| abstract_inverted_index.or | 85 |
| abstract_inverted_index.to | 12, 51, 72, 84 |
| abstract_inverted_index.All | 106 |
| abstract_inverted_index.CU. | 63 |
| abstract_inverted_index.CUs | 80 |
| abstract_inverted_index.ERP | 28, 32 |
| abstract_inverted_index.and | 35, 109 |
| abstract_inverted_index.the | 53, 74, 97 |
| abstract_inverted_index.(CU) | 9 |
| abstract_inverted_index.3232 | 61 |
| abstract_inverted_index.This | 1 |
| abstract_inverted_index.fast | 6, 91 |
| abstract_inverted_index.only | 110 |
| abstract_inverted_index.show | 95 |
| abstract_inverted_index.size | 82 |
| abstract_inverted_index.than | 87 |
| abstract_inverted_index.that | 96 |
| abstract_inverted_index.time | 15, 104 |
| abstract_inverted_index.unit | 8 |
| abstract_inverted_index.with | 31, 81 |
| abstract_inverted_index.(ERP) | 19 |
| abstract_inverted_index.3232, | 88 |
| abstract_inverted_index.Intra | 107 |
| abstract_inverted_index.Then, | 41 |
| abstract_inverted_index.delta | 113 |
| abstract_inverted_index.edges | 59 |
| abstract_inverted_index.equal | 83 |
| abstract_inverted_index.intra | 66 |
| abstract_inverted_index.modes | 78 |
| abstract_inverted_index.saves | 100 |
| abstract_inverted_index.video | 24 |
| abstract_inverted_index.1.39%. | 116 |
| abstract_inverted_index.58.51% | 101 |
| abstract_inverted_index.First, | 26 |
| abstract_inverted_index.coding | 7 |
| abstract_inverted_index.method | 99 |
| abstract_inverted_index.neural | 47 |
| abstract_inverted_index.number | 75 |
| abstract_inverted_index.reduce | 13, 73 |
| abstract_inverted_index.scheme | 69 |
| abstract_inverted_index.videos | 21 |
| abstract_inverted_index.article | 2 |
| abstract_inverted_index.coding. | 25 |
| abstract_inverted_index.dataset | 30 |
| abstract_inverted_index.network | 48 |
| abstract_inverted_index.predict | 52 |
| abstract_inverted_index.results | 94 |
| abstract_inverted_index.smaller | 86 |
| abstract_inverted_index.thereby | 89 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Finally, | 64 |
| abstract_inverted_index.designed | 50 |
| abstract_inverted_index.encoding | 14, 103 |
| abstract_inverted_index.latitude | 33 |
| abstract_inverted_index.proposed | 98 |
| abstract_inverted_index.proposes | 3 |
| abstract_inverted_index.achieving | 90 |
| abstract_inverted_index.algorithm | 11 |
| abstract_inverted_index.candidate | 77 |
| abstract_inverted_index.developed | 71 |
| abstract_inverted_index.encoding. | 92 |
| abstract_inverted_index.increases | 111 |
| abstract_inverted_index.luminance | 62 |
| abstract_inverted_index.parameter | 37 |
| abstract_inverted_index.partition | 10, 45, 54 |
| abstract_inverted_index.versatile | 23 |
| abstract_inverted_index.bit‐rate | 114 |
| abstract_inverted_index.prediction | 44, 67 |
| abstract_inverted_index.projection | 18 |
| abstract_inverted_index.Bjontegaard | 112 |
| abstract_inverted_index.lightweight | 43 |
| abstract_inverted_index.probability | 55 |
| abstract_inverted_index.360‐degree | 20, 29 |
| abstract_inverted_index.Experimental | 93 |
| abstract_inverted_index.established. | 40 |
| abstract_inverted_index.quantitative | 36 |
| abstract_inverted_index.configuration | 108 |
| abstract_inverted_index.convolutional | 46 |
| abstract_inverted_index.characteristics | 34, 38 |
| abstract_inverted_index.equirectangular | 17 |
| abstract_inverted_index.decision‐making | 68 |
| abstract_inverted_index.deep‐learning‐based | 5 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5055084879 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I50632499 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.800000011920929 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.81363025 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |