A Federated Learning Framework Based on Incremental Weighting and Diversity Selection for Internet of Vehicles Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/electronics11223668
With the rapid increase of data, centralized machine learning can no longer meet the application requirements of the Internet of Vehicles (IoV). On the one hand, both car owners and regulators pay more attention to data privacy and are unwilling to share data, which forms the isolated data island challenge. On the other hand, the incremental data generated in IoV are massive and diverse. All these issues have brought challenges of data increment and data diversity. The current common federated learning or incremental learning frameworks cannot effectively integrate incremental data with existing machine learning (ML) models. Therefore, this paper proposes a Federated Learning Framework Based on Incremental Weighting and Diversity Selection for IoV (Fed-IW&DS). In Fed-IW&DS, a vehicle diversity selection algorithm was proposed, which uses a variety of performance indicators to calculate diversity scores, effectively reducing homogeneous computing. Also, it proposes a vehicle federated incremental algorithm that uses an improved arctangent curve as the decay function, to realize the rapid fusion of incremental data with existing ML models. Moreover, we have carried out several sets of experiments to test the validity of the proposed Fed-IW&DS framework’s performance. The experimental results show that, under the same global communication round and similar computing time, the Fed-IW&DS framework has significantly improved performance in all aspects compared to the frameworks FED-AVG, FED-SGD, FED-prox & the decay functions linear, square curve and arc tangent. Specifically, the Fed-IW&DS framework improves the Acc (accuracy), loss (loss), and Matthews correlation coefficient (MCC) by approximately 32%, 83%, and 66%, respectively. This result shows that Fed-IW&DS is a more reliable solution than the common frameworks of federated learning, and it can effectively deal with the dynamic incremental data in the IoV scenario. Our findings should make a significant contribution to the field of federated learning.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/electronics11223668
- https://www.mdpi.com/2079-9292/11/22/3668/pdf?version=1669018019
- OA Status
- gold
- Cited By
- 21
- References
- 41
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4308870594
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4308870594Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/electronics11223668Digital Object Identifier
- Title
-
A Federated Learning Framework Based on Incremental Weighting and Diversity Selection for Internet of VehiclesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-11-09Full publication date if available
- Authors
-
Lei Yuan, Shir Li Wang, Minghui Zhong, Meixia Wang, Theam Foo NgList of authors in order
- Landing page
-
https://doi.org/10.3390/electronics11223668Publisher landing page
- PDF URL
-
https://www.mdpi.com/2079-9292/11/22/3668/pdf?version=1669018019Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2079-9292/11/22/3668/pdf?version=1669018019Direct OA link when available
- Concepts
-
Weighting, Computer science, Selection (genetic algorithm), The Internet, Machine learning, Homogeneous, Artificial intelligence, Algorithm, Data mining, Mathematics, Operating system, Radiology, Combinatorics, MedicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
21Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 8, 2023: 9Per-year citation counts (last 5 years)
- References (count)
-
41Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4308870594 |
|---|---|
| doi | https://doi.org/10.3390/electronics11223668 |
| ids.doi | https://doi.org/10.3390/electronics11223668 |
| ids.openalex | https://openalex.org/W4308870594 |
| fwci | 4.11177523 |
| type | article |
| title | A Federated Learning Framework Based on Incremental Weighting and Diversity Selection for Internet of Vehicles |
| biblio.issue | 22 |
| biblio.volume | 11 |
| biblio.last_page | 3668 |
| biblio.first_page | 3668 |
| topics[0].id | https://openalex.org/T10764 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Privacy-Preserving Technologies in Data |
| topics[1].id | https://openalex.org/T10761 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9883999824523926 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Vehicular Ad Hoc Networks (VANETs) |
| topics[2].id | https://openalex.org/T13918 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9671000242233276 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Advanced Data and IoT Technologies |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C183115368 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6767035722732544 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q856577 |
| concepts[0].display_name | Weighting |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6002258658409119 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C81917197 |
| concepts[2].level | 2 |
| concepts[2].score | 0.572446882724762 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[2].display_name | Selection (genetic algorithm) |
| concepts[3].id | https://openalex.org/C110875604 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4805886745452881 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q75 |
| concepts[3].display_name | The Internet |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.44655153155326843 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C66882249 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4342668056488037 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q169336 |
| concepts[5].display_name | Homogeneous |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.41694778203964233 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3647367060184479 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3423774242401123 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.19238504767417908 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C111919701 |
| concepts[10].level | 1 |
| concepts[10].score | 0.08085745573043823 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[10].display_name | Operating system |
| concepts[11].id | https://openalex.org/C126838900 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[11].display_name | Radiology |
| concepts[12].id | https://openalex.org/C114614502 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[12].display_name | Combinatorics |
| concepts[13].id | https://openalex.org/C71924100 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[13].display_name | Medicine |
| keywords[0].id | https://openalex.org/keywords/weighting |
| keywords[0].score | 0.6767035722732544 |
| keywords[0].display_name | Weighting |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6002258658409119 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/selection |
| keywords[2].score | 0.572446882724762 |
| keywords[2].display_name | Selection (genetic algorithm) |
| keywords[3].id | https://openalex.org/keywords/the-internet |
| keywords[3].score | 0.4805886745452881 |
| keywords[3].display_name | The Internet |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.44655153155326843 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/homogeneous |
| keywords[5].score | 0.4342668056488037 |
| keywords[5].display_name | Homogeneous |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.41694778203964233 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/algorithm |
| keywords[7].score | 0.3647367060184479 |
| keywords[7].display_name | Algorithm |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.3423774242401123 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.19238504767417908 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/operating-system |
| keywords[10].score | 0.08085745573043823 |
| keywords[10].display_name | Operating system |
| language | en |
| locations[0].id | doi:10.3390/electronics11223668 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210202905 |
| locations[0].source.issn | 2079-9292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2079-9292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Electronics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2079-9292/11/22/3668/pdf?version=1669018019 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Electronics |
| locations[0].landing_page_url | https://doi.org/10.3390/electronics11223668 |
| locations[1].id | pmh:oai:doaj.org/article:589a8df16dcd4a7fb8b04ad44f05c7b4 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Electronics, Vol 11, Iss 3668, p 3668 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/589a8df16dcd4a7fb8b04ad44f05c7b4 |
| locations[2].id | pmh:oai:mdpi.com:/2079-9292/11/22/3668/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Electronics; Volume 11; Issue 22; Pages: 3668 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/electronics11223668 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100390943 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Lei Yuan |
| authorships[0].countries | MY |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I143923087 |
| authorships[0].affiliations[0].raw_affiliation_string | Faculty of Art, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia |
| authorships[0].institutions[0].id | https://openalex.org/I143923087 |
| authorships[0].institutions[0].ror | https://ror.org/005bjd415 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I143923087 |
| authorships[0].institutions[0].country_code | MY |
| authorships[0].institutions[0].display_name | Sultan Idris Education University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yuan Lei |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Faculty of Art, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia |
| authorships[1].author.id | https://openalex.org/A5059367213 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4417-3213 |
| authorships[1].author.display_name | Shir Li Wang |
| authorships[1].countries | MY |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I143923087 |
| authorships[1].affiliations[0].raw_affiliation_string | Faculty of Art, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia |
| authorships[1].institutions[0].id | https://openalex.org/I143923087 |
| authorships[1].institutions[0].ror | https://ror.org/005bjd415 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I143923087 |
| authorships[1].institutions[0].country_code | MY |
| authorships[1].institutions[0].display_name | Sultan Idris Education University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shir Li Wang |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Faculty of Art, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia |
| authorships[2].author.id | https://openalex.org/A5071653193 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5766-1657 |
| authorships[2].author.display_name | Minghui Zhong |
| authorships[2].countries | CN, TH |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I150807315 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Information and Engineering, Guangxi University of Foreign Languages, Nanning 530001, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I197898795 |
| authorships[2].affiliations[1].raw_affiliation_string | Faculty of Accountancy and Digital Business, Payap University, Chiang Mai 50000, Thailand |
| authorships[2].institutions[0].id | https://openalex.org/I150807315 |
| authorships[2].institutions[0].ror | https://ror.org/02c9qn167 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I150807315 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Guangxi University |
| authorships[2].institutions[1].id | https://openalex.org/I197898795 |
| authorships[2].institutions[1].ror | https://ror.org/05d8xgj52 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I197898795 |
| authorships[2].institutions[1].country_code | TH |
| authorships[2].institutions[1].display_name | Payap University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Minghui Zhong |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Faculty of Accountancy and Digital Business, Payap University, Chiang Mai 50000, Thailand, School of Information and Engineering, Guangxi University of Foreign Languages, Nanning 530001, China |
| authorships[3].author.id | https://openalex.org/A5101750401 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1681-4095 |
| authorships[3].author.display_name | Meixia Wang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I150807315 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Information and Engineering, Guangxi University of Foreign Languages, Nanning 530001, China |
| authorships[3].institutions[0].id | https://openalex.org/I150807315 |
| authorships[3].institutions[0].ror | https://ror.org/02c9qn167 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I150807315 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Guangxi University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Meixia Wang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Information and Engineering, Guangxi University of Foreign Languages, Nanning 530001, China |
| authorships[4].author.id | https://openalex.org/A5004013796 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9529-4456 |
| authorships[4].author.display_name | Theam Foo Ng |
| authorships[4].countries | MY |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I139322472 |
| authorships[4].affiliations[0].raw_affiliation_string | Centre for Global Sustainability Studies, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia |
| authorships[4].institutions[0].id | https://openalex.org/I139322472 |
| authorships[4].institutions[0].ror | https://ror.org/02rgb2k63 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I139322472 |
| authorships[4].institutions[0].country_code | MY |
| authorships[4].institutions[0].display_name | Universiti Sains Malaysia |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Theam Foo Ng |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Centre for Global Sustainability Studies, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2079-9292/11/22/3668/pdf?version=1669018019 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-11-18T00:00:00 |
| display_name | A Federated Learning Framework Based on Incremental Weighting and Diversity Selection for Internet of Vehicles |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10764 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Privacy-Preserving Technologies in Data |
| related_works | https://openalex.org/W2180954594, https://openalex.org/W2052835778, https://openalex.org/W2049003611, https://openalex.org/W2127804977, https://openalex.org/W2108418243, https://openalex.org/W164103134, https://openalex.org/W2040545019, https://openalex.org/W2787352659, https://openalex.org/W1970611213, https://openalex.org/W4206560911 |
| cited_by_count | 21 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 8 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 9 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/electronics11223668 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210202905 |
| best_oa_location.source.issn | 2079-9292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2079-9292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Electronics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2079-9292/11/22/3668/pdf?version=1669018019 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Electronics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/electronics11223668 |
| primary_location.id | doi:10.3390/electronics11223668 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210202905 |
| primary_location.source.issn | 2079-9292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2079-9292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Electronics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2079-9292/11/22/3668/pdf?version=1669018019 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Electronics |
| primary_location.landing_page_url | https://doi.org/10.3390/electronics11223668 |
| publication_date | 2022-11-09 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3163614561, https://openalex.org/W4280603007, https://openalex.org/W3126709645, https://openalex.org/W3113314849, https://openalex.org/W3004442284, https://openalex.org/W3203216930, https://openalex.org/W4200026066, https://openalex.org/W4293419783, https://openalex.org/W4284709716, https://openalex.org/W3085946920, https://openalex.org/W4226263522, https://openalex.org/W3005390518, https://openalex.org/W3010920105, https://openalex.org/W4200571368, https://openalex.org/W4224234834, https://openalex.org/W4283824310, https://openalex.org/W4285813692, https://openalex.org/W4296826005, https://openalex.org/W4296350897, https://openalex.org/W4297238462, https://openalex.org/W3163421814, https://openalex.org/W4210935571, https://openalex.org/W3005429940, https://openalex.org/W3027472889, https://openalex.org/W4220985235, https://openalex.org/W3043615800, https://openalex.org/W3136231207, https://openalex.org/W2972567486, https://openalex.org/W2905267932, https://openalex.org/W3197030567, https://openalex.org/W4205903734, https://openalex.org/W3049166794, https://openalex.org/W4283717923, https://openalex.org/W4296391926, https://openalex.org/W4205792295, https://openalex.org/W4205698318, https://openalex.org/W3196405711, https://openalex.org/W3192457170, https://openalex.org/W3152624284, https://openalex.org/W4220789466, https://openalex.org/W3194243671 |
| referenced_works_count | 41 |
| abstract_inverted_index.a | 100, 116, 125, 141, 257, 286 |
| abstract_inverted_index.In | 114 |
| abstract_inverted_index.ML | 166 |
| abstract_inverted_index.On | 22, 50 |
| abstract_inverted_index.an | 148 |
| abstract_inverted_index.as | 152 |
| abstract_inverted_index.by | 244 |
| abstract_inverted_index.in | 58, 209, 278 |
| abstract_inverted_index.is | 256 |
| abstract_inverted_index.it | 139, 269 |
| abstract_inverted_index.no | 10 |
| abstract_inverted_index.of | 4, 16, 19, 70, 127, 161, 175, 181, 265, 292 |
| abstract_inverted_index.on | 105 |
| abstract_inverted_index.or | 81 |
| abstract_inverted_index.to | 34, 40, 130, 156, 177, 213, 289 |
| abstract_inverted_index.we | 169 |
| abstract_inverted_index.Acc | 235 |
| abstract_inverted_index.All | 64 |
| abstract_inverted_index.IoV | 59, 112, 280 |
| abstract_inverted_index.Our | 282 |
| abstract_inverted_index.The | 76, 187 |
| abstract_inverted_index.all | 210 |
| abstract_inverted_index.and | 29, 37, 62, 73, 108, 198, 226, 239, 248, 268 |
| abstract_inverted_index.arc | 227 |
| abstract_inverted_index.are | 38, 60 |
| abstract_inverted_index.can | 9, 270 |
| abstract_inverted_index.car | 27 |
| abstract_inverted_index.for | 111 |
| abstract_inverted_index.has | 205 |
| abstract_inverted_index.one | 24 |
| abstract_inverted_index.out | 172 |
| abstract_inverted_index.pay | 31 |
| abstract_inverted_index.the | 1, 13, 17, 23, 45, 51, 54, 153, 158, 179, 182, 193, 202, 214, 220, 230, 234, 262, 274, 279, 290 |
| abstract_inverted_index.was | 121 |
| abstract_inverted_index.(ML) | 94 |
| abstract_inverted_index.32%, | 246 |
| abstract_inverted_index.66%, | 249 |
| abstract_inverted_index.83%, | 247 |
| abstract_inverted_index.This | 251 |
| abstract_inverted_index.With | 0 |
| abstract_inverted_index.both | 26 |
| abstract_inverted_index.data | 35, 47, 56, 71, 74, 89, 163, 277 |
| abstract_inverted_index.deal | 272 |
| abstract_inverted_index.have | 67, 170 |
| abstract_inverted_index.loss | 237 |
| abstract_inverted_index.make | 285 |
| abstract_inverted_index.meet | 12 |
| abstract_inverted_index.more | 32, 258 |
| abstract_inverted_index.same | 194 |
| abstract_inverted_index.sets | 174 |
| abstract_inverted_index.show | 190 |
| abstract_inverted_index.test | 178 |
| abstract_inverted_index.than | 261 |
| abstract_inverted_index.that | 146, 254 |
| abstract_inverted_index.this | 97 |
| abstract_inverted_index.uses | 124, 147 |
| abstract_inverted_index.with | 90, 164, 273 |
| abstract_inverted_index.& | 219 |
| abstract_inverted_index.(MCC) | 243 |
| abstract_inverted_index.Also, | 138 |
| abstract_inverted_index.Based | 104 |
| abstract_inverted_index.curve | 151, 225 |
| abstract_inverted_index.data, | 5, 42 |
| abstract_inverted_index.decay | 154, 221 |
| abstract_inverted_index.field | 291 |
| abstract_inverted_index.forms | 44 |
| abstract_inverted_index.hand, | 25, 53 |
| abstract_inverted_index.other | 52 |
| abstract_inverted_index.paper | 98 |
| abstract_inverted_index.rapid | 2, 159 |
| abstract_inverted_index.round | 197 |
| abstract_inverted_index.share | 41 |
| abstract_inverted_index.shows | 253 |
| abstract_inverted_index.that, | 191 |
| abstract_inverted_index.these | 65 |
| abstract_inverted_index.time, | 201 |
| abstract_inverted_index.under | 192 |
| abstract_inverted_index.which | 43, 123 |
| abstract_inverted_index.(IoV). | 21 |
| abstract_inverted_index.cannot | 85 |
| abstract_inverted_index.common | 78, 263 |
| abstract_inverted_index.fusion | 160 |
| abstract_inverted_index.global | 195 |
| abstract_inverted_index.island | 48 |
| abstract_inverted_index.issues | 66 |
| abstract_inverted_index.longer | 11 |
| abstract_inverted_index.owners | 28 |
| abstract_inverted_index.result | 252 |
| abstract_inverted_index.should | 284 |
| abstract_inverted_index.square | 224 |
| abstract_inverted_index.(loss), | 238 |
| abstract_inverted_index.aspects | 211 |
| abstract_inverted_index.brought | 68 |
| abstract_inverted_index.carried | 171 |
| abstract_inverted_index.current | 77 |
| abstract_inverted_index.dynamic | 275 |
| abstract_inverted_index.linear, | 223 |
| abstract_inverted_index.machine | 7, 92 |
| abstract_inverted_index.massive | 61 |
| abstract_inverted_index.models. | 95, 167 |
| abstract_inverted_index.privacy | 36 |
| abstract_inverted_index.realize | 157 |
| abstract_inverted_index.results | 189 |
| abstract_inverted_index.scores, | 133 |
| abstract_inverted_index.several | 173 |
| abstract_inverted_index.similar | 199 |
| abstract_inverted_index.variety | 126 |
| abstract_inverted_index.vehicle | 117, 142 |
| abstract_inverted_index.FED-AVG, | 216 |
| abstract_inverted_index.FED-SGD, | 217 |
| abstract_inverted_index.FED-prox | 218 |
| abstract_inverted_index.Internet | 18 |
| abstract_inverted_index.Learning | 102 |
| abstract_inverted_index.Matthews | 240 |
| abstract_inverted_index.Vehicles | 20 |
| abstract_inverted_index.compared | 212 |
| abstract_inverted_index.diverse. | 63 |
| abstract_inverted_index.existing | 91, 165 |
| abstract_inverted_index.findings | 283 |
| abstract_inverted_index.improved | 149, 207 |
| abstract_inverted_index.improves | 233 |
| abstract_inverted_index.increase | 3 |
| abstract_inverted_index.isolated | 46 |
| abstract_inverted_index.learning | 8, 80, 83, 93 |
| abstract_inverted_index.proposed | 183 |
| abstract_inverted_index.proposes | 99, 140 |
| abstract_inverted_index.reducing | 135 |
| abstract_inverted_index.reliable | 259 |
| abstract_inverted_index.solution | 260 |
| abstract_inverted_index.tangent. | 228 |
| abstract_inverted_index.validity | 180 |
| abstract_inverted_index.Diversity | 109 |
| abstract_inverted_index.Federated | 101 |
| abstract_inverted_index.Framework | 103 |
| abstract_inverted_index.Moreover, | 168 |
| abstract_inverted_index.Selection | 110 |
| abstract_inverted_index.Weighting | 107 |
| abstract_inverted_index.algorithm | 120, 145 |
| abstract_inverted_index.attention | 33 |
| abstract_inverted_index.calculate | 131 |
| abstract_inverted_index.computing | 200 |
| abstract_inverted_index.diversity | 118, 132 |
| abstract_inverted_index.federated | 79, 143, 266, 293 |
| abstract_inverted_index.framework | 204, 232 |
| abstract_inverted_index.function, | 155 |
| abstract_inverted_index.functions | 222 |
| abstract_inverted_index.generated | 57 |
| abstract_inverted_index.increment | 72 |
| abstract_inverted_index.integrate | 87 |
| abstract_inverted_index.learning, | 267 |
| abstract_inverted_index.learning. | 294 |
| abstract_inverted_index.proposed, | 122 |
| abstract_inverted_index.scenario. | 281 |
| abstract_inverted_index.selection | 119 |
| abstract_inverted_index.unwilling | 39 |
| abstract_inverted_index.Therefore, | 96 |
| abstract_inverted_index.arctangent | 150 |
| abstract_inverted_index.challenge. | 49 |
| abstract_inverted_index.challenges | 69 |
| abstract_inverted_index.computing. | 137 |
| abstract_inverted_index.diversity. | 75 |
| abstract_inverted_index.frameworks | 84, 215, 264 |
| abstract_inverted_index.indicators | 129 |
| abstract_inverted_index.regulators | 30 |
| abstract_inverted_index.(accuracy), | 236 |
| abstract_inverted_index.Incremental | 106 |
| abstract_inverted_index.application | 14 |
| abstract_inverted_index.centralized | 6 |
| abstract_inverted_index.coefficient | 242 |
| abstract_inverted_index.correlation | 241 |
| abstract_inverted_index.effectively | 86, 134, 271 |
| abstract_inverted_index.experiments | 176 |
| abstract_inverted_index.homogeneous | 136 |
| abstract_inverted_index.incremental | 55, 82, 88, 144, 162, 276 |
| abstract_inverted_index.performance | 128, 208 |
| abstract_inverted_index.significant | 287 |
| abstract_inverted_index.contribution | 288 |
| abstract_inverted_index.experimental | 188 |
| abstract_inverted_index.performance. | 186 |
| abstract_inverted_index.requirements | 15 |
| abstract_inverted_index.Fed-IW&DS | 184, 203, 231, 255 |
| abstract_inverted_index.Specifically, | 229 |
| abstract_inverted_index.approximately | 245 |
| abstract_inverted_index.communication | 196 |
| abstract_inverted_index.framework’s | 185 |
| abstract_inverted_index.respectively. | 250 |
| abstract_inverted_index.significantly | 206 |
| abstract_inverted_index.Fed-IW&DS, | 115 |
| abstract_inverted_index.(Fed-IW&DS). | 113 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5059367213, https://openalex.org/A5071653193 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I143923087, https://openalex.org/I150807315, https://openalex.org/I197898795 |
| citation_normalized_percentile.value | 0.92539644 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |