A Flatness Error Prediction Model in Face Milling Operations Using 6-DOF Robotic Arms Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/jmmp9020066
The current trend in machining with robotic arms involves leveraging Industry 4.0 technologies to propose solutions that reduce path deviation errors. This approach presents significant challenges alongside promising advancements, as well as a substantial increase in the cost of future industrial robotic cells, which is not always amortizable. As an alternative or complementary approach to this trend, methods encouraging the occasional use of Industry 4.0 devices for characterizing the behavior of the actual physical cell, calibration, or adjustment are proposed. One such method, called FlePFaM, predicts flatness errors in face milling operations using robotic arms. This is achieved by estimating tool path deviation errors through the integration of a simple model of the robot arm’s mechanics with the cutting forces vector of the process, thereby optimizing machining conditions. These conditions are determined through prior empirical estimations of mass, stiffness, and damping. The conducted tests enabled the selection of the most favorable combination of variables, such as the robot wrist configuration, the position and orientation of the workpiece, and the predominant milling orientation. This led to the identification of the configuration with the lowest absolute flatness error according to the model’s predictions. The results demonstrated a high degree of similarity—between 97% for the closest case and 57% for the farthest case—between simulated and experimental flatness error values. FlePFaM represents a significant step forward in adopting innovative robotic arm solutions for reliable and efficient production. FlePFaM includes dimensional flatness indicators that provide practical support for decision making.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/jmmp9020066
- OA Status
- gold
- Cited By
- 1
- References
- 55
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407751351
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407751351Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/jmmp9020066Digital Object Identifier
- Title
-
A Flatness Error Prediction Model in Face Milling Operations Using 6-DOF Robotic ArmsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-19Full publication date if available
- Authors
-
I. Iglesias, Alberto Sánchez Lite, Cristina González-Gaya, F.J.G. SilvaList of authors in order
- Landing page
-
https://doi.org/10.3390/jmmp9020066Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/jmmp9020066Direct OA link when available
- Concepts
-
Flatness (cosmology), Face (sociological concept), Computer science, Artificial intelligence, Computer vision, Engineering, Physics, Philosophy, Quantum mechanics, Linguistics, CosmologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
55Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407751351 |
|---|---|
| doi | https://doi.org/10.3390/jmmp9020066 |
| ids.doi | https://doi.org/10.3390/jmmp9020066 |
| ids.openalex | https://openalex.org/W4407751351 |
| fwci | 2.157798 |
| type | article |
| title | A Flatness Error Prediction Model in Face Milling Operations Using 6-DOF Robotic Arms |
| biblio.issue | 2 |
| biblio.volume | 9 |
| biblio.last_page | 66 |
| biblio.first_page | 66 |
| topics[0].id | https://openalex.org/T10188 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9980999827384949 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2210 |
| topics[0].subfield.display_name | Mechanical Engineering |
| topics[0].display_name | Advanced machining processes and optimization |
| topics[1].id | https://openalex.org/T11159 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9980000257492065 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2209 |
| topics[1].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[1].display_name | Manufacturing Process and Optimization |
| topics[2].id | https://openalex.org/T11301 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9950000047683716 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Advanced Surface Polishing Techniques |
| is_xpac | False |
| apc_list.value | 1600 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1732 |
| apc_paid.value | 1600 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1732 |
| concepts[0].id | https://openalex.org/C2778530986 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8137595653533936 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5457948 |
| concepts[0].display_name | Flatness (cosmology) |
| concepts[1].id | https://openalex.org/C2779304628 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5749709606170654 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3503480 |
| concepts[1].display_name | Face (sociological concept) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4876464605331421 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.43121272325515747 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C31972630 |
| concepts[4].level | 1 |
| concepts[4].score | 0.36946016550064087 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[4].display_name | Computer vision |
| concepts[5].id | https://openalex.org/C127413603 |
| concepts[5].level | 0 |
| concepts[5].score | 0.32415205240249634 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[5].display_name | Engineering |
| concepts[6].id | https://openalex.org/C121332964 |
| concepts[6].level | 0 |
| concepts[6].score | 0.12017881870269775 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[6].display_name | Physics |
| concepts[7].id | https://openalex.org/C138885662 |
| concepts[7].level | 0 |
| concepts[7].score | 0.058780282735824585 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[7].display_name | Philosophy |
| concepts[8].id | https://openalex.org/C62520636 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[8].display_name | Quantum mechanics |
| concepts[9].id | https://openalex.org/C41895202 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[9].display_name | Linguistics |
| concepts[10].id | https://openalex.org/C26405456 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q338 |
| concepts[10].display_name | Cosmology |
| keywords[0].id | https://openalex.org/keywords/flatness |
| keywords[0].score | 0.8137595653533936 |
| keywords[0].display_name | Flatness (cosmology) |
| keywords[1].id | https://openalex.org/keywords/face |
| keywords[1].score | 0.5749709606170654 |
| keywords[1].display_name | Face (sociological concept) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.4876464605331421 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.43121272325515747 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/computer-vision |
| keywords[4].score | 0.36946016550064087 |
| keywords[4].display_name | Computer vision |
| keywords[5].id | https://openalex.org/keywords/engineering |
| keywords[5].score | 0.32415205240249634 |
| keywords[5].display_name | Engineering |
| keywords[6].id | https://openalex.org/keywords/physics |
| keywords[6].score | 0.12017881870269775 |
| keywords[6].display_name | Physics |
| keywords[7].id | https://openalex.org/keywords/philosophy |
| keywords[7].score | 0.058780282735824585 |
| keywords[7].display_name | Philosophy |
| language | en |
| locations[0].id | doi:10.3390/jmmp9020066 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210232045 |
| locations[0].source.issn | 2504-4494 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2504-4494 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of Manufacturing and Materials Processing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Manufacturing and Materials Processing |
| locations[0].landing_page_url | https://doi.org/10.3390/jmmp9020066 |
| locations[1].id | pmh:oai:doaj.org/article:fa22eab1cfc94d17b9298edfd8a4e76a |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Journal of Manufacturing and Materials Processing, Vol 9, Iss 2, p 66 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/fa22eab1cfc94d17b9298edfd8a4e76a |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5002303364 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3755-1896 |
| authorships[0].author.display_name | I. Iglesias |
| authorships[0].countries | ES |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I6289922 |
| authorships[0].affiliations[0].raw_affiliation_string | Defense University Center in the Spanish Naval Academy (CUD-ENM), Universidade de Vigo, Plaza de España, 36920 Marín, Spain |
| authorships[0].institutions[0].id | https://openalex.org/I6289922 |
| authorships[0].institutions[0].ror | https://ror.org/05rdf8595 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I6289922 |
| authorships[0].institutions[0].country_code | ES |
| authorships[0].institutions[0].display_name | Universidade de Vigo |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Iván Iglesias |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Defense University Center in the Spanish Naval Academy (CUD-ENM), Universidade de Vigo, Plaza de España, 36920 Marín, Spain |
| authorships[1].author.id | https://openalex.org/A5006390161 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4975-7472 |
| authorships[1].author.display_name | Alberto Sánchez Lite |
| authorships[1].countries | ES |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I108103353 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Industrial Engineering, Universidad de Valladolid, Paseo del Cauce, 59, 47011 Valladolid, Spain |
| authorships[1].institutions[0].id | https://openalex.org/I108103353 |
| authorships[1].institutions[0].ror | https://ror.org/01fvbaw18 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I108103353 |
| authorships[1].institutions[0].country_code | ES |
| authorships[1].institutions[0].display_name | Universidad de Valladolid |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Alberto Sánchez-Lite |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Industrial Engineering, Universidad de Valladolid, Paseo del Cauce, 59, 47011 Valladolid, Spain |
| authorships[2].author.id | https://openalex.org/A5113055030 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Cristina González-Gaya |
| authorships[2].countries | ES |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I178450904 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Construction and Manufacturing Engineering, Universidad Nacional de Educación a Distancia-UNED, Juan del Rosal, n° 12, 28040 Madrid, Spain |
| authorships[2].institutions[0].id | https://openalex.org/I178450904 |
| authorships[2].institutions[0].ror | https://ror.org/02msb5n36 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I178450904 |
| authorships[2].institutions[0].country_code | ES |
| authorships[2].institutions[0].display_name | Universidad Nacional de Educación a Distancia |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Cristina González-Gaya |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Construction and Manufacturing Engineering, Universidad Nacional de Educación a Distancia-UNED, Juan del Rosal, n° 12, 28040 Madrid, Spain |
| authorships[3].author.id | https://openalex.org/A5100386990 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8570-4362 |
| authorships[3].author.display_name | F.J.G. Silva |
| authorships[3].countries | PT |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210121509 |
| authorships[3].affiliations[0].raw_affiliation_string | LAETA, INEGI—Associated Laboratory for Energy, Transports and Aeronautics, Campus FEUP, Rua Dr. Roberto Frias, 400, 4200-465 Porto, Portugal |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I83863532 |
| authorships[3].affiliations[1].raw_affiliation_string | CIDEM, ISEP—School of Engineering, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal |
| authorships[3].institutions[0].id | https://openalex.org/I4210121509 |
| authorships[3].institutions[0].ror | https://ror.org/02pk7c879 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I182534213, https://openalex.org/I4210121509 |
| authorships[3].institutions[0].country_code | PT |
| authorships[3].institutions[0].display_name | Institute of Mechanical Engineering and Industrial Mangement |
| authorships[3].institutions[1].id | https://openalex.org/I83863532 |
| authorships[3].institutions[1].ror | https://ror.org/04988re48 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I83863532 |
| authorships[3].institutions[1].country_code | PT |
| authorships[3].institutions[1].display_name | Polytechnic Institute of Porto |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Francisco J. G. Silva |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | CIDEM, ISEP—School of Engineering, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal, LAETA, INEGI—Associated Laboratory for Energy, Transports and Aeronautics, Campus FEUP, Rua Dr. Roberto Frias, 400, 4200-465 Porto, Portugal |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/jmmp9020066 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Flatness Error Prediction Model in Face Milling Operations Using 6-DOF Robotic Arms |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10188 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9980999827384949 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2210 |
| primary_topic.subfield.display_name | Mechanical Engineering |
| primary_topic.display_name | Advanced machining processes and optimization |
| related_works | https://openalex.org/W2772917594, https://openalex.org/W2036807459, https://openalex.org/W2058170566, https://openalex.org/W2755342338, https://openalex.org/W2166024367, https://openalex.org/W3116076068, https://openalex.org/W2229312674, https://openalex.org/W2951359407, https://openalex.org/W2079911747, https://openalex.org/W1969923398 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/jmmp9020066 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210232045 |
| best_oa_location.source.issn | 2504-4494 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2504-4494 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of Manufacturing and Materials Processing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Manufacturing and Materials Processing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/jmmp9020066 |
| primary_location.id | doi:10.3390/jmmp9020066 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210232045 |
| primary_location.source.issn | 2504-4494 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2504-4494 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of Manufacturing and Materials Processing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Manufacturing and Materials Processing |
| primary_location.landing_page_url | https://doi.org/10.3390/jmmp9020066 |
| publication_date | 2025-02-19 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4379524638, https://openalex.org/W2273672928, https://openalex.org/W2770214145, https://openalex.org/W2998737122, https://openalex.org/W2934971075, https://openalex.org/W849511993, https://openalex.org/W4401322077, https://openalex.org/W2761538102, https://openalex.org/W4387678010, https://openalex.org/W4224221644, https://openalex.org/W2508070084, https://openalex.org/W4385358951, https://openalex.org/W2973666892, https://openalex.org/W2809994915, https://openalex.org/W3013199283, https://openalex.org/W2806968294, https://openalex.org/W4200098188, https://openalex.org/W4293685738, https://openalex.org/W2309629272, https://openalex.org/W4388506917, https://openalex.org/W6941301346, https://openalex.org/W2724048924, https://openalex.org/W2788491404, https://openalex.org/W3176776750, https://openalex.org/W4392767846, https://openalex.org/W3163842612, https://openalex.org/W4287385010, https://openalex.org/W4391504496, https://openalex.org/W2997398064, https://openalex.org/W4390725377, https://openalex.org/W2051410726, https://openalex.org/W2597672622, https://openalex.org/W1827952881, https://openalex.org/W4293066243, https://openalex.org/W2440260721, https://openalex.org/W2554447546, https://openalex.org/W3113043726, https://openalex.org/W2538346096, https://openalex.org/W4225265694, https://openalex.org/W2926061728, https://openalex.org/W3092372063, https://openalex.org/W6639185900, https://openalex.org/W2525627239, https://openalex.org/W1969875442, https://openalex.org/W1977140104, https://openalex.org/W4296100952, https://openalex.org/W2482136089, https://openalex.org/W2590805326, https://openalex.org/W4297822222, https://openalex.org/W2088948858, https://openalex.org/W3031007234, https://openalex.org/W4286750047, https://openalex.org/W4386191760, https://openalex.org/W3088398675, https://openalex.org/W1867701952 |
| referenced_works_count | 55 |
| abstract_inverted_index.a | 32, 108, 194, 218 |
| abstract_inverted_index.As | 48 |
| abstract_inverted_index.an | 49 |
| abstract_inverted_index.as | 29, 31, 155 |
| abstract_inverted_index.by | 98 |
| abstract_inverted_index.in | 3, 35, 88, 222 |
| abstract_inverted_index.is | 44, 96 |
| abstract_inverted_index.of | 38, 62, 70, 107, 111, 121, 136, 147, 152, 164, 177, 197 |
| abstract_inverted_index.or | 51, 76 |
| abstract_inverted_index.to | 13, 54, 174, 187 |
| abstract_inverted_index.4.0 | 11, 64 |
| abstract_inverted_index.57% | 205 |
| abstract_inverted_index.97% | 199 |
| abstract_inverted_index.One | 80 |
| abstract_inverted_index.The | 0, 141, 191 |
| abstract_inverted_index.and | 139, 162, 167, 204, 211, 230 |
| abstract_inverted_index.are | 78, 130 |
| abstract_inverted_index.arm | 226 |
| abstract_inverted_index.for | 66, 200, 206, 228, 242 |
| abstract_inverted_index.led | 173 |
| abstract_inverted_index.not | 45 |
| abstract_inverted_index.the | 36, 59, 68, 71, 105, 112, 117, 122, 145, 148, 156, 160, 165, 168, 175, 178, 181, 188, 201, 207 |
| abstract_inverted_index.use | 61 |
| abstract_inverted_index.This | 21, 95, 172 |
| abstract_inverted_index.arms | 7 |
| abstract_inverted_index.case | 203 |
| abstract_inverted_index.cost | 37 |
| abstract_inverted_index.face | 89 |
| abstract_inverted_index.high | 195 |
| abstract_inverted_index.most | 149 |
| abstract_inverted_index.path | 18, 101 |
| abstract_inverted_index.step | 220 |
| abstract_inverted_index.such | 81, 154 |
| abstract_inverted_index.that | 16, 238 |
| abstract_inverted_index.this | 55 |
| abstract_inverted_index.tool | 100 |
| abstract_inverted_index.well | 30 |
| abstract_inverted_index.with | 5, 116, 180 |
| abstract_inverted_index.These | 128 |
| abstract_inverted_index.arms. | 94 |
| abstract_inverted_index.cell, | 74 |
| abstract_inverted_index.error | 185, 214 |
| abstract_inverted_index.mass, | 137 |
| abstract_inverted_index.model | 110 |
| abstract_inverted_index.prior | 133 |
| abstract_inverted_index.robot | 113, 157 |
| abstract_inverted_index.tests | 143 |
| abstract_inverted_index.trend | 2 |
| abstract_inverted_index.using | 92 |
| abstract_inverted_index.which | 43 |
| abstract_inverted_index.wrist | 158 |
| abstract_inverted_index.actual | 72 |
| abstract_inverted_index.always | 46 |
| abstract_inverted_index.called | 83 |
| abstract_inverted_index.cells, | 42 |
| abstract_inverted_index.degree | 196 |
| abstract_inverted_index.errors | 87, 103 |
| abstract_inverted_index.forces | 119 |
| abstract_inverted_index.future | 39 |
| abstract_inverted_index.lowest | 182 |
| abstract_inverted_index.reduce | 17 |
| abstract_inverted_index.simple | 109 |
| abstract_inverted_index.trend, | 56 |
| abstract_inverted_index.vector | 120 |
| abstract_inverted_index.FlePFaM | 216, 233 |
| abstract_inverted_index.arm’s | 114 |
| abstract_inverted_index.closest | 202 |
| abstract_inverted_index.current | 1 |
| abstract_inverted_index.cutting | 118 |
| abstract_inverted_index.devices | 65 |
| abstract_inverted_index.enabled | 144 |
| abstract_inverted_index.errors. | 20 |
| abstract_inverted_index.forward | 221 |
| abstract_inverted_index.making. | 244 |
| abstract_inverted_index.method, | 82 |
| abstract_inverted_index.methods | 57 |
| abstract_inverted_index.milling | 90, 170 |
| abstract_inverted_index.propose | 14 |
| abstract_inverted_index.provide | 239 |
| abstract_inverted_index.results | 192 |
| abstract_inverted_index.robotic | 6, 41, 93, 225 |
| abstract_inverted_index.support | 241 |
| abstract_inverted_index.thereby | 124 |
| abstract_inverted_index.through | 104, 132 |
| abstract_inverted_index.values. | 215 |
| abstract_inverted_index.FlePFaM, | 84 |
| abstract_inverted_index.Industry | 10, 63 |
| abstract_inverted_index.absolute | 183 |
| abstract_inverted_index.achieved | 97 |
| abstract_inverted_index.adopting | 223 |
| abstract_inverted_index.approach | 22, 53 |
| abstract_inverted_index.behavior | 69 |
| abstract_inverted_index.damping. | 140 |
| abstract_inverted_index.decision | 243 |
| abstract_inverted_index.farthest | 208 |
| abstract_inverted_index.flatness | 86, 184, 213, 236 |
| abstract_inverted_index.includes | 234 |
| abstract_inverted_index.increase | 34 |
| abstract_inverted_index.involves | 8 |
| abstract_inverted_index.physical | 73 |
| abstract_inverted_index.position | 161 |
| abstract_inverted_index.predicts | 85 |
| abstract_inverted_index.presents | 23 |
| abstract_inverted_index.process, | 123 |
| abstract_inverted_index.reliable | 229 |
| abstract_inverted_index.according | 186 |
| abstract_inverted_index.alongside | 26 |
| abstract_inverted_index.conducted | 142 |
| abstract_inverted_index.deviation | 19, 102 |
| abstract_inverted_index.efficient | 231 |
| abstract_inverted_index.empirical | 134 |
| abstract_inverted_index.favorable | 150 |
| abstract_inverted_index.machining | 4, 126 |
| abstract_inverted_index.mechanics | 115 |
| abstract_inverted_index.model’s | 189 |
| abstract_inverted_index.practical | 240 |
| abstract_inverted_index.promising | 27 |
| abstract_inverted_index.proposed. | 79 |
| abstract_inverted_index.selection | 146 |
| abstract_inverted_index.simulated | 210 |
| abstract_inverted_index.solutions | 15, 227 |
| abstract_inverted_index.adjustment | 77 |
| abstract_inverted_index.challenges | 25 |
| abstract_inverted_index.conditions | 129 |
| abstract_inverted_index.determined | 131 |
| abstract_inverted_index.estimating | 99 |
| abstract_inverted_index.indicators | 237 |
| abstract_inverted_index.industrial | 40 |
| abstract_inverted_index.innovative | 224 |
| abstract_inverted_index.leveraging | 9 |
| abstract_inverted_index.occasional | 60 |
| abstract_inverted_index.operations | 91 |
| abstract_inverted_index.optimizing | 125 |
| abstract_inverted_index.represents | 217 |
| abstract_inverted_index.stiffness, | 138 |
| abstract_inverted_index.variables, | 153 |
| abstract_inverted_index.workpiece, | 166 |
| abstract_inverted_index.alternative | 50 |
| abstract_inverted_index.combination | 151 |
| abstract_inverted_index.conditions. | 127 |
| abstract_inverted_index.dimensional | 235 |
| abstract_inverted_index.encouraging | 58 |
| abstract_inverted_index.estimations | 135 |
| abstract_inverted_index.integration | 106 |
| abstract_inverted_index.orientation | 163 |
| abstract_inverted_index.predominant | 169 |
| abstract_inverted_index.production. | 232 |
| abstract_inverted_index.significant | 24, 219 |
| abstract_inverted_index.substantial | 33 |
| abstract_inverted_index.amortizable. | 47 |
| abstract_inverted_index.calibration, | 75 |
| abstract_inverted_index.demonstrated | 193 |
| abstract_inverted_index.experimental | 212 |
| abstract_inverted_index.orientation. | 171 |
| abstract_inverted_index.predictions. | 190 |
| abstract_inverted_index.technologies | 12 |
| abstract_inverted_index.advancements, | 28 |
| abstract_inverted_index.complementary | 52 |
| abstract_inverted_index.configuration | 179 |
| abstract_inverted_index.case—between | 209 |
| abstract_inverted_index.characterizing | 67 |
| abstract_inverted_index.configuration, | 159 |
| abstract_inverted_index.identification | 176 |
| abstract_inverted_index.similarity—between | 198 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.72887823 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |