A Flexible Smoother Adapted to Censored Data With Outliers and Its Application to SARS-CoV-2 Monitoring in Wastewater Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3389/fams.2022.836349
A sentinel network, Obépine , has been designed to monitor SARS-CoV-2 viral load in wastewaters arriving at wastewater treatment plants (WWTPs) in France as an indirect macro-epidemiological parameter. The sources of uncertainty in such a monitoring system are numerous, and the concentration measurements it provides are left-censored and contain outliers, which biases the results of usual smoothing methods. Hence, the need for an adapted pre-processing in order to evaluate the real daily amount of viruses arriving at each WWTP. We propose a method based on an auto-regressive model adapted to censored data with outliers. Inference and prediction are produced via a discretized smoother which makes it a very flexible tool. This method is both validated on simulations and real data from Obépine . The resulting smoothed signal shows a good correlation with other epidemiological indicators and is currently used by Obépine to provide an estimate of virus circulation over the watersheds corresponding to about 200 WWTPs.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3389/fams.2022.836349
- https://www.frontiersin.org/articles/10.3389/fams.2022.836349/pdf
- OA Status
- gold
- Cited By
- 16
- References
- 22
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4225598388
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4225598388Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/fams.2022.836349Digital Object Identifier
- Title
-
A Flexible Smoother Adapted to Censored Data With Outliers and Its Application to SARS-CoV-2 Monitoring in WastewaterWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-02-09Full publication date if available
- Authors
-
Marie Courbariaux, Nicolas Cluzel, Siyun Wang, Vincent Maréchal, Laurent Moulin, Sébastien Wurtzer, Jean‐Marie Mouchel, Yvon Maday, Grégory NuelList of authors in order
- Landing page
-
https://doi.org/10.3389/fams.2022.836349Publisher landing page
- PDF URL
-
https://www.frontiersin.org/articles/10.3389/fams.2022.836349/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.frontiersin.org/articles/10.3389/fams.2022.836349/pdfDirect OA link when available
- Concepts
-
Outlier, Smoothing, Inference, Computer science, Anomaly detection, Statistics, Environmental science, Data mining, Mathematics, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
16Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 3, 2023: 4, 2022: 7Per-year citation counts (last 5 years)
- References (count)
-
22Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4225598388 |
|---|---|
| doi | https://doi.org/10.3389/fams.2022.836349 |
| ids.doi | https://doi.org/10.3389/fams.2022.836349 |
| ids.openalex | https://openalex.org/W4225598388 |
| fwci | 2.00290873 |
| type | article |
| title | A Flexible Smoother Adapted to Censored Data With Outliers and Its Application to SARS-CoV-2 Monitoring in Wastewater |
| biblio.issue | |
| biblio.volume | 8 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11754 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9991000294685364 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2725 |
| topics[0].subfield.display_name | Infectious Diseases |
| topics[0].display_name | SARS-CoV-2 detection and testing |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9965999722480774 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| topics[2].id | https://openalex.org/T11220 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9962999820709229 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2205 |
| topics[2].subfield.display_name | Civil and Structural Engineering |
| topics[2].display_name | Water Systems and Optimization |
| funders[0].id | https://openalex.org/F4320313933 |
| funders[0].ror | |
| funders[0].display_name | Ministère de l'Enseignement supérieur, de la Recherche et de l'Innovation |
| funders[1].id | https://openalex.org/F4320324215 |
| funders[1].ror | https://ror.org/00x9ewr78 |
| funders[1].display_name | Conseil National de la Recherche Scientifique |
| funders[2].id | https://openalex.org/F4320330232 |
| funders[2].ror | |
| funders[2].display_name | Sorbonne Université |
| is_xpac | False |
| apc_list.value | 1150 |
| apc_list.currency | USD |
| apc_list.value_usd | 1150 |
| apc_paid.value | 1078 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 1162 |
| concepts[0].id | https://openalex.org/C79337645 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7646575570106506 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q779824 |
| concepts[0].display_name | Outlier |
| concepts[1].id | https://openalex.org/C3770464 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6535234451293945 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q775963 |
| concepts[1].display_name | Smoothing |
| concepts[2].id | https://openalex.org/C2776214188 |
| concepts[2].level | 2 |
| concepts[2].score | 0.45019203424453735 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[2].display_name | Inference |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.44129371643066406 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C739882 |
| concepts[4].level | 2 |
| concepts[4].score | 0.43838271498680115 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3560506 |
| concepts[4].display_name | Anomaly detection |
| concepts[5].id | https://openalex.org/C105795698 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4276971220970154 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[5].display_name | Statistics |
| concepts[6].id | https://openalex.org/C39432304 |
| concepts[6].level | 0 |
| concepts[6].score | 0.41992855072021484 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[6].display_name | Environmental science |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4188902974128723 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.2733945846557617 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.21346041560173035 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/outlier |
| keywords[0].score | 0.7646575570106506 |
| keywords[0].display_name | Outlier |
| keywords[1].id | https://openalex.org/keywords/smoothing |
| keywords[1].score | 0.6535234451293945 |
| keywords[1].display_name | Smoothing |
| keywords[2].id | https://openalex.org/keywords/inference |
| keywords[2].score | 0.45019203424453735 |
| keywords[2].display_name | Inference |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.44129371643066406 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/anomaly-detection |
| keywords[4].score | 0.43838271498680115 |
| keywords[4].display_name | Anomaly detection |
| keywords[5].id | https://openalex.org/keywords/statistics |
| keywords[5].score | 0.4276971220970154 |
| keywords[5].display_name | Statistics |
| keywords[6].id | https://openalex.org/keywords/environmental-science |
| keywords[6].score | 0.41992855072021484 |
| keywords[6].display_name | Environmental science |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.4188902974128723 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.2733945846557617 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.21346041560173035 |
| keywords[9].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.3389/fams.2022.836349 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2597085352 |
| locations[0].source.issn | 2297-4687 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2297-4687 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Applied Mathematics and Statistics |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_lineage_names | Frontiers Media |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.frontiersin.org/articles/10.3389/fams.2022.836349/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Applied Mathematics and Statistics |
| locations[0].landing_page_url | https://doi.org/10.3389/fams.2022.836349 |
| locations[1].id | pmh:oai:HAL:hal-03939048v1 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402512 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | HAL (Le Centre pour la Communication Scientifique Directe) |
| locations[1].source.host_organization | https://openalex.org/I1294671590 |
| locations[1].source.host_organization_name | Centre National de la Recherche Scientifique |
| locations[1].source.host_organization_lineage | https://openalex.org/I1294671590 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Journal articles |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Frontiers in Applied Mathematics and Statistics, 2022, 8, ⟨10.3389/fams.2022.836349⟩ |
| locations[1].landing_page_url | https://hal.sorbonne-universite.fr/hal-03939048 |
| locations[2].id | pmh:oai:doaj.org/article:ab8b141858124184b2e820c5b4c0b0bd |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Frontiers in Applied Mathematics and Statistics, Vol 8 (2022) |
| locations[2].landing_page_url | https://doaj.org/article/ab8b141858124184b2e820c5b4c0b0bd |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5068424956 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Marie Courbariaux |
| authorships[0].countries | FR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4389425479, https://openalex.org/I39804081 |
| authorships[0].affiliations[0].raw_affiliation_string | Sorbonne Université Maison des Modélisations Ingénieries et Technologies |
| authorships[0].institutions[0].id | https://openalex.org/I4389425479 |
| authorships[0].institutions[0].ror | https://ror.org/05kytrf83 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I39804081, https://openalex.org/I4210123595, https://openalex.org/I4389425479 |
| authorships[0].institutions[0].country_code | |
| authorships[0].institutions[0].display_name | Méthodes et Outils pour les Sciences Participatives |
| authorships[0].institutions[1].id | https://openalex.org/I39804081 |
| authorships[0].institutions[1].ror | https://ror.org/02en5vm52 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I39804081 |
| authorships[0].institutions[1].country_code | FR |
| authorships[0].institutions[1].display_name | Sorbonne Université |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Marie Courbariaux |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Sorbonne Université Maison des Modélisations Ingénieries et Technologies |
| authorships[1].author.id | https://openalex.org/A5078805178 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7880-8913 |
| authorships[1].author.display_name | Nicolas Cluzel |
| authorships[1].countries | FR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4389425479, https://openalex.org/I39804081 |
| authorships[1].affiliations[0].raw_affiliation_string | Sorbonne Université Maison des Modélisations Ingénieries et Technologies |
| authorships[1].institutions[0].id | https://openalex.org/I4389425479 |
| authorships[1].institutions[0].ror | https://ror.org/05kytrf83 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I39804081, https://openalex.org/I4210123595, https://openalex.org/I4389425479 |
| authorships[1].institutions[0].country_code | |
| authorships[1].institutions[0].display_name | Méthodes et Outils pour les Sciences Participatives |
| authorships[1].institutions[1].id | https://openalex.org/I39804081 |
| authorships[1].institutions[1].ror | https://ror.org/02en5vm52 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I39804081 |
| authorships[1].institutions[1].country_code | FR |
| authorships[1].institutions[1].display_name | Sorbonne Université |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Nicolas Cluzel |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Sorbonne Université Maison des Modélisations Ingénieries et Technologies |
| authorships[2].author.id | https://openalex.org/A5026177089 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2468-2483 |
| authorships[2].author.display_name | Siyun Wang |
| authorships[2].countries | FR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4389425479, https://openalex.org/I39804081 |
| authorships[2].affiliations[0].raw_affiliation_string | Sorbonne Université Maison des Modélisations Ingénieries et Technologies |
| authorships[2].institutions[0].id | https://openalex.org/I4389425479 |
| authorships[2].institutions[0].ror | https://ror.org/05kytrf83 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I39804081, https://openalex.org/I4210123595, https://openalex.org/I4389425479 |
| authorships[2].institutions[0].country_code | |
| authorships[2].institutions[0].display_name | Méthodes et Outils pour les Sciences Participatives |
| authorships[2].institutions[1].id | https://openalex.org/I39804081 |
| authorships[2].institutions[1].ror | https://ror.org/02en5vm52 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I39804081 |
| authorships[2].institutions[1].country_code | FR |
| authorships[2].institutions[1].display_name | Sorbonne Université |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Siyun Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Sorbonne Université Maison des Modélisations Ingénieries et Technologies |
| authorships[3].author.id | https://openalex.org/A5110049078 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Vincent Maréchal |
| authorships[3].countries | FR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210134622 |
| authorships[3].affiliations[0].raw_affiliation_string | Centre de Recherche Saint-Antoine |
| authorships[3].institutions[0].id | https://openalex.org/I4210134622 |
| authorships[3].institutions[0].ror | https://ror.org/03wxndv36 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I154526488, https://openalex.org/I39804081, https://openalex.org/I4210097159, https://openalex.org/I4210129850, https://openalex.org/I4210134622 |
| authorships[3].institutions[0].country_code | FR |
| authorships[3].institutions[0].display_name | Centre de Recherche Saint-Antoine |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Vincent Maréchal |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Centre de Recherche Saint-Antoine |
| authorships[4].author.id | https://openalex.org/A5086586498 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5162-7215 |
| authorships[4].author.display_name | Laurent Moulin |
| authorships[4].countries | FR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210148169 |
| authorships[4].affiliations[0].raw_affiliation_string | Eau de Paris |
| authorships[4].institutions[0].id | https://openalex.org/I4210148169 |
| authorships[4].institutions[0].ror | https://ror.org/04beck307 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210148169 |
| authorships[4].institutions[0].country_code | FR |
| authorships[4].institutions[0].display_name | Eau de Paris (France) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Laurent Moulin |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Eau de Paris |
| authorships[5].author.id | https://openalex.org/A5024257457 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-9628-1075 |
| authorships[5].author.display_name | Sébastien Wurtzer |
| authorships[5].countries | FR |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210148169 |
| authorships[5].affiliations[0].raw_affiliation_string | Eau de Paris |
| authorships[5].institutions[0].id | https://openalex.org/I4210148169 |
| authorships[5].institutions[0].ror | https://ror.org/04beck307 |
| authorships[5].institutions[0].type | company |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210148169 |
| authorships[5].institutions[0].country_code | FR |
| authorships[5].institutions[0].display_name | Eau de Paris (France) |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Sébastien Wurtzer |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Eau de Paris |
| authorships[6].author.id | https://openalex.org/A5074037585 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-2892-7951 |
| authorships[6].author.display_name | Jean‐Marie Mouchel |
| authorships[6].countries | FR |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210112279 |
| authorships[6].affiliations[0].raw_affiliation_string | Milieux Environnementaux, Transferts et Interactions dans les hydrosystèmes et les Sols |
| authorships[6].institutions[0].id | https://openalex.org/I4210112279 |
| authorships[6].institutions[0].ror | https://ror.org/0229z0679 |
| authorships[6].institutions[0].type | facility |
| authorships[6].institutions[0].lineage | https://openalex.org/I1294671590, https://openalex.org/I1294671590, https://openalex.org/I159885104, https://openalex.org/I2746051580, https://openalex.org/I39804081, https://openalex.org/I4210107625, https://openalex.org/I4210112279 |
| authorships[6].institutions[0].country_code | FR |
| authorships[6].institutions[0].display_name | Milieux environnementaux, transferts et interactions dans les hydrosystèmes et les sols |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Jean-Marie Mouchel |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Milieux Environnementaux, Transferts et Interactions dans les hydrosystèmes et les Sols |
| authorships[7].author.id | https://openalex.org/A5089357934 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-0443-6544 |
| authorships[7].author.display_name | Yvon Maday |
| authorships[7].countries | FR |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210158291 |
| authorships[7].affiliations[0].raw_affiliation_string | Laboratoire Jacques-Louis Lions |
| authorships[7].institutions[0].id | https://openalex.org/I4210158291 |
| authorships[7].institutions[0].ror | https://ror.org/04xmteb38 |
| authorships[7].institutions[0].type | facility |
| authorships[7].institutions[0].lineage | https://openalex.org/I1294671590, https://openalex.org/I1294671590, https://openalex.org/I1326498283, https://openalex.org/I204730241, https://openalex.org/I39804081, https://openalex.org/I4210141950, https://openalex.org/I4210158291 |
| authorships[7].institutions[0].country_code | FR |
| authorships[7].institutions[0].display_name | Laboratoire Jacques-Louis Lions |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Yvon Maday |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Laboratoire Jacques-Louis Lions |
| authorships[8].author.id | https://openalex.org/A5107209106 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-9910-2354 |
| authorships[8].author.display_name | Grégory Nuel |
| authorships[8].countries | FR |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I4210158291 |
| authorships[8].affiliations[0].raw_affiliation_string | Laboratoire Jacques-Louis Lions |
| authorships[8].affiliations[1].institution_ids | https://openalex.org/I4387155306, https://openalex.org/I4387155306 |
| authorships[8].affiliations[1].raw_affiliation_string | Laboratoire de Probabilités, Statistique et Modélisation |
| authorships[8].institutions[0].id | https://openalex.org/I4387155306 |
| authorships[8].institutions[0].ror | https://ror.org/02vnd0e65 |
| authorships[8].institutions[0].type | facility |
| authorships[8].institutions[0].lineage | https://openalex.org/I1294671590, https://openalex.org/I204730241, https://openalex.org/I39804081, https://openalex.org/I4387155306 |
| authorships[8].institutions[0].country_code | |
| authorships[8].institutions[0].display_name | Laboratoire de Probabilités, Statistique et Modélisation |
| authorships[8].institutions[1].id | https://openalex.org/I4210158291 |
| authorships[8].institutions[1].ror | https://ror.org/04xmteb38 |
| authorships[8].institutions[1].type | facility |
| authorships[8].institutions[1].lineage | https://openalex.org/I1294671590, https://openalex.org/I1294671590, https://openalex.org/I1326498283, https://openalex.org/I204730241, https://openalex.org/I39804081, https://openalex.org/I4210141950, https://openalex.org/I4210158291 |
| authorships[8].institutions[1].country_code | FR |
| authorships[8].institutions[1].display_name | Laboratoire Jacques-Louis Lions |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Grégory Nuel |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Laboratoire Jacques-Louis Lions, Laboratoire de Probabilités, Statistique et Modélisation |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.frontiersin.org/articles/10.3389/fams.2022.836349/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Flexible Smoother Adapted to Censored Data With Outliers and Its Application to SARS-CoV-2 Monitoring in Wastewater |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11754 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9991000294685364 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2725 |
| primary_topic.subfield.display_name | Infectious Diseases |
| primary_topic.display_name | SARS-CoV-2 detection and testing |
| related_works | https://openalex.org/W1978572805, https://openalex.org/W2383807498, https://openalex.org/W1997992934, https://openalex.org/W1987225439, https://openalex.org/W2499612753, https://openalex.org/W3111802945, https://openalex.org/W2946096271, https://openalex.org/W2295423552, https://openalex.org/W1598471830, https://openalex.org/W3107369729 |
| cited_by_count | 16 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 7 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3389/fams.2022.836349 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2597085352 |
| best_oa_location.source.issn | 2297-4687 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2297-4687 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Applied Mathematics and Statistics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_lineage_names | Frontiers Media |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.frontiersin.org/articles/10.3389/fams.2022.836349/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Applied Mathematics and Statistics |
| best_oa_location.landing_page_url | https://doi.org/10.3389/fams.2022.836349 |
| primary_location.id | doi:10.3389/fams.2022.836349 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2597085352 |
| primary_location.source.issn | 2297-4687 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2297-4687 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Applied Mathematics and Statistics |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_lineage_names | Frontiers Media |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.frontiersin.org/articles/10.3389/fams.2022.836349/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Applied Mathematics and Statistics |
| primary_location.landing_page_url | https://doi.org/10.3389/fams.2022.836349 |
| publication_date | 2022-02-09 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3112723974, https://openalex.org/W6790523194, https://openalex.org/W6794800684, https://openalex.org/W2105934661, https://openalex.org/W2083402998, https://openalex.org/W2087039354, https://openalex.org/W1971866212, https://openalex.org/W1983766089, https://openalex.org/W1749494163, https://openalex.org/W2137043637, https://openalex.org/W2911546748, https://openalex.org/W2218617828, https://openalex.org/W1872560531, https://openalex.org/W1581808154, https://openalex.org/W2963869366, https://openalex.org/W2095954269, https://openalex.org/W4210969899, https://openalex.org/W3215163470, https://openalex.org/W6798823733, https://openalex.org/W3198331736, https://openalex.org/W4225310480, https://openalex.org/W3132668452 |
| referenced_works_count | 22 |
| abstract_inverted_index., | 4 |
| abstract_inverted_index.. | 122 |
| abstract_inverted_index.A | 0 |
| abstract_inverted_index.a | 34, 81, 100, 106, 128 |
| abstract_inverted_index.We | 79 |
| abstract_inverted_index.an | 24, 62, 85, 143 |
| abstract_inverted_index.as | 23 |
| abstract_inverted_index.at | 16, 76 |
| abstract_inverted_index.by | 139 |
| abstract_inverted_index.in | 13, 21, 32, 65 |
| abstract_inverted_index.is | 112, 136 |
| abstract_inverted_index.it | 43, 105 |
| abstract_inverted_index.of | 30, 54, 73, 145 |
| abstract_inverted_index.on | 84, 115 |
| abstract_inverted_index.to | 8, 67, 89, 141, 152 |
| abstract_inverted_index.200 | 154 |
| abstract_inverted_index.The | 28, 123 |
| abstract_inverted_index.and | 39, 47, 95, 117, 135 |
| abstract_inverted_index.are | 37, 45, 97 |
| abstract_inverted_index.for | 61 |
| abstract_inverted_index.has | 5 |
| abstract_inverted_index.the | 40, 52, 59, 69, 149 |
| abstract_inverted_index.via | 99 |
| abstract_inverted_index.This | 110 |
| abstract_inverted_index.been | 6 |
| abstract_inverted_index.both | 113 |
| abstract_inverted_index.data | 91, 119 |
| abstract_inverted_index.each | 77 |
| abstract_inverted_index.from | 120 |
| abstract_inverted_index.good | 129 |
| abstract_inverted_index.load | 12 |
| abstract_inverted_index.need | 60 |
| abstract_inverted_index.over | 148 |
| abstract_inverted_index.real | 70, 118 |
| abstract_inverted_index.such | 33 |
| abstract_inverted_index.used | 138 |
| abstract_inverted_index.very | 107 |
| abstract_inverted_index.with | 92, 131 |
| abstract_inverted_index.WWTP. | 78 |
| abstract_inverted_index.about | 153 |
| abstract_inverted_index.based | 83 |
| abstract_inverted_index.daily | 71 |
| abstract_inverted_index.makes | 104 |
| abstract_inverted_index.model | 87 |
| abstract_inverted_index.order | 66 |
| abstract_inverted_index.other | 132 |
| abstract_inverted_index.shows | 127 |
| abstract_inverted_index.tool. | 109 |
| abstract_inverted_index.usual | 55 |
| abstract_inverted_index.viral | 11 |
| abstract_inverted_index.virus | 146 |
| abstract_inverted_index.which | 50, 103 |
| abstract_inverted_index.France | 22 |
| abstract_inverted_index.Hence, | 58 |
| abstract_inverted_index.WWTPs. | 155 |
| abstract_inverted_index.amount | 72 |
| abstract_inverted_index.biases | 51 |
| abstract_inverted_index.method | 82, 111 |
| abstract_inverted_index.plants | 19 |
| abstract_inverted_index.signal | 126 |
| abstract_inverted_index.system | 36 |
| abstract_inverted_index.(WWTPs) | 20 |
| abstract_inverted_index.adapted | 63, 88 |
| abstract_inverted_index.contain | 48 |
| abstract_inverted_index.monitor | 9 |
| abstract_inverted_index.propose | 80 |
| abstract_inverted_index.provide | 142 |
| abstract_inverted_index.results | 53 |
| abstract_inverted_index.sources | 29 |
| abstract_inverted_index.viruses | 74 |
| abstract_inverted_index.Obépine | 3, 121, 140 |
| abstract_inverted_index.arriving | 15, 75 |
| abstract_inverted_index.censored | 90 |
| abstract_inverted_index.designed | 7 |
| abstract_inverted_index.estimate | 144 |
| abstract_inverted_index.evaluate | 68 |
| abstract_inverted_index.flexible | 108 |
| abstract_inverted_index.indirect | 25 |
| abstract_inverted_index.methods. | 57 |
| abstract_inverted_index.network, | 2 |
| abstract_inverted_index.produced | 98 |
| abstract_inverted_index.provides | 44 |
| abstract_inverted_index.sentinel | 1 |
| abstract_inverted_index.smoothed | 125 |
| abstract_inverted_index.smoother | 102 |
| abstract_inverted_index.Inference | 94 |
| abstract_inverted_index.currently | 137 |
| abstract_inverted_index.numerous, | 38 |
| abstract_inverted_index.outliers, | 49 |
| abstract_inverted_index.outliers. | 93 |
| abstract_inverted_index.resulting | 124 |
| abstract_inverted_index.smoothing | 56 |
| abstract_inverted_index.treatment | 18 |
| abstract_inverted_index.validated | 114 |
| abstract_inverted_index.SARS-CoV-2 | 10 |
| abstract_inverted_index.indicators | 134 |
| abstract_inverted_index.monitoring | 35 |
| abstract_inverted_index.parameter. | 27 |
| abstract_inverted_index.prediction | 96 |
| abstract_inverted_index.wastewater | 17 |
| abstract_inverted_index.watersheds | 150 |
| abstract_inverted_index.circulation | 147 |
| abstract_inverted_index.correlation | 130 |
| abstract_inverted_index.discretized | 101 |
| abstract_inverted_index.simulations | 116 |
| abstract_inverted_index.uncertainty | 31 |
| abstract_inverted_index.wastewaters | 14 |
| abstract_inverted_index.measurements | 42 |
| abstract_inverted_index.concentration | 41 |
| abstract_inverted_index.corresponding | 151 |
| abstract_inverted_index.left-censored | 46 |
| abstract_inverted_index.pre-processing | 64 |
| abstract_inverted_index.auto-regressive | 86 |
| abstract_inverted_index.epidemiological | 133 |
| abstract_inverted_index.macro-epidemiological | 26 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 9 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/6 |
| sustainable_development_goals[0].score | 0.8600000143051147 |
| sustainable_development_goals[0].display_name | Clean water and sanitation |
| citation_normalized_percentile.value | 0.85652565 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |