A foundation model for clinician-centered drug repurposing Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1101/2023.03.19.23287458
Drug repurposing – identifying new therapeutic uses for approved drugs – is often serendipitous and opportunistic, expanding the use of drugs for new diseases. The clinical utility of drug repurposing AI models remains limited because the models focus narrowly on diseases for which some drugs already exist. Here, we introduce T x GNN, a graph foundation model for zero-shot drug repurposing, identifying therapeutic candidates even for diseases with limited treatment options or no existing drugs. Trained on a medical knowledge graph, T x GNN utilizes a graph neural network and metric-learning module to rank drugs as potential indications and contraindications across 17,080 diseases. When benchmarked against eight methods, T x GNN improves prediction accuracy for indications by 49.2% and contraindications by 35.1% under stringent zero-shot evaluation. To facilitate model interpretation, T x GNN’s Explainer module offers transparent insights into multi-hop medical knowledge paths that form T x GNN’s predictive rationales. Human evaluation of T x GNN’s Explainer showed that T x GNN’s predictions and explanations perform encouragingly on multiple axes of performance beyond accuracy. Many of T x GNN’s novel predictions align with off-label prescriptions clinicians make in a large healthcare system. T x GNN’s drug repurposing predictions are accurate, consistent with off-label drug use, and can be investigated by human experts through multi-hop interpretable rationales.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2023.03.19.23287458
- https://www.medrxiv.org/content/medrxiv/early/2023/03/20/2023.03.19.23287458.full.pdf
- OA Status
- green
- Cited By
- 14
- References
- 48
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4327909454
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4327909454Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2023.03.19.23287458Digital Object Identifier
- Title
-
A foundation model for clinician-centered drug repurposingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-03-20Full publication date if available
- Authors
-
Kexin Huang, Payal Chandak, Qianwen Wang, Shreyas Havaldar, Akhil Vaid, Jure Leskovec, Girish N. Nadkarni, Benjamin S. Glicksberg, Nils Gehlenborg, Marinka ŽitnikList of authors in order
- Landing page
-
https://doi.org/10.1101/2023.03.19.23287458Publisher landing page
- PDF URL
-
https://www.medrxiv.org/content/medrxiv/early/2023/03/20/2023.03.19.23287458.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.medrxiv.org/content/medrxiv/early/2023/03/20/2023.03.19.23287458.full.pdfDirect OA link when available
- Concepts
-
Repurposing, Foundation (evidence), Drug repositioning, Drug, Computer science, Medicine, Pharmacology, Engineering, Political science, Law, Waste managementTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
14Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8, 2024: 4, 2023: 2Per-year citation counts (last 5 years)
- References (count)
-
48Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4327909454 |
|---|---|
| doi | https://doi.org/10.1101/2023.03.19.23287458 |
| ids.doi | https://doi.org/10.1101/2023.03.19.23287458 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39148855 |
| ids.openalex | https://openalex.org/W4327909454 |
| fwci | 4.32545685 |
| type | preprint |
| title | A foundation model for clinician-centered drug repurposing |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10211 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9866999983787537 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Computational Drug Discovery Methods |
| topics[1].id | https://openalex.org/T12168 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9732999801635742 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2739 |
| topics[1].subfield.display_name | Public Health, Environmental and Occupational Health |
| topics[1].display_name | Health and Medical Research Impacts |
| topics[2].id | https://openalex.org/T11710 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9650999903678894 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Biomedical Text Mining and Ontologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C519536355 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8115376234054565 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21021151 |
| concepts[0].display_name | Repurposing |
| concepts[1].id | https://openalex.org/C2780966255 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7734824419021606 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5474306 |
| concepts[1].display_name | Foundation (evidence) |
| concepts[2].id | https://openalex.org/C103637391 |
| concepts[2].level | 3 |
| concepts[2].score | 0.769340455532074 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5308921 |
| concepts[2].display_name | Drug repositioning |
| concepts[3].id | https://openalex.org/C2780035454 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5130792856216431 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q8386 |
| concepts[3].display_name | Drug |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4667632281780243 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C71924100 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3332898020744324 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[5].display_name | Medicine |
| concepts[6].id | https://openalex.org/C98274493 |
| concepts[6].level | 1 |
| concepts[6].score | 0.2536262571811676 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q128406 |
| concepts[6].display_name | Pharmacology |
| concepts[7].id | https://openalex.org/C127413603 |
| concepts[7].level | 0 |
| concepts[7].score | 0.22463762760162354 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[7].display_name | Engineering |
| concepts[8].id | https://openalex.org/C17744445 |
| concepts[8].level | 0 |
| concepts[8].score | 0.08347240090370178 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[8].display_name | Political science |
| concepts[9].id | https://openalex.org/C199539241 |
| concepts[9].level | 1 |
| concepts[9].score | 0.056243062019348145 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[9].display_name | Law |
| concepts[10].id | https://openalex.org/C548081761 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q180388 |
| concepts[10].display_name | Waste management |
| keywords[0].id | https://openalex.org/keywords/repurposing |
| keywords[0].score | 0.8115376234054565 |
| keywords[0].display_name | Repurposing |
| keywords[1].id | https://openalex.org/keywords/foundation |
| keywords[1].score | 0.7734824419021606 |
| keywords[1].display_name | Foundation (evidence) |
| keywords[2].id | https://openalex.org/keywords/drug-repositioning |
| keywords[2].score | 0.769340455532074 |
| keywords[2].display_name | Drug repositioning |
| keywords[3].id | https://openalex.org/keywords/drug |
| keywords[3].score | 0.5130792856216431 |
| keywords[3].display_name | Drug |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.4667632281780243 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/medicine |
| keywords[5].score | 0.3332898020744324 |
| keywords[5].display_name | Medicine |
| keywords[6].id | https://openalex.org/keywords/pharmacology |
| keywords[6].score | 0.2536262571811676 |
| keywords[6].display_name | Pharmacology |
| keywords[7].id | https://openalex.org/keywords/engineering |
| keywords[7].score | 0.22463762760162354 |
| keywords[7].display_name | Engineering |
| keywords[8].id | https://openalex.org/keywords/political-science |
| keywords[8].score | 0.08347240090370178 |
| keywords[8].display_name | Political science |
| keywords[9].id | https://openalex.org/keywords/law |
| keywords[9].score | 0.056243062019348145 |
| keywords[9].display_name | Law |
| language | en |
| locations[0].id | doi:10.1101/2023.03.19.23287458 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.medrxiv.org/content/medrxiv/early/2023/03/20/2023.03.19.23287458.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2023.03.19.23287458 |
| locations[1].id | pmid:39148855 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | medRxiv : the preprint server for health sciences |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39148855 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11326339 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | medRxiv |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11326339 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5049086940 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6693-8390 |
| authorships[0].author.display_name | Kexin Huang |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I136199984 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Biomedical Informatics, Harvard Medical School, Boston, MA 025 |
| authorships[0].institutions[0].id | https://openalex.org/I136199984 |
| authorships[0].institutions[0].ror | https://ror.org/03vek6s52 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I136199984 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Harvard University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kexin Huang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Biomedical Informatics, Harvard Medical School, Boston, MA 025 |
| authorships[1].author.id | https://openalex.org/A5037842761 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1097-803X |
| authorships[1].author.display_name | Payal Chandak |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210092658 |
| authorships[1].affiliations[0].raw_affiliation_string | Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 0139 |
| authorships[1].institutions[0].id | https://openalex.org/I4210092658 |
| authorships[1].institutions[0].ror | https://ror.org/00jjeh629 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210092658 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Harvard–MIT Division of Health Sciences and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Payal Chandak |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 0139 |
| authorships[2].author.id | https://openalex.org/A5100609686 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1728-4102 |
| authorships[2].author.display_name | Qianwen Wang |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I136199984 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Biomedical Informatics, Harvard Medical School, Boston, MA 025 |
| authorships[2].institutions[0].id | https://openalex.org/I136199984 |
| authorships[2].institutions[0].ror | https://ror.org/03vek6s52 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I136199984 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Harvard University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Qianwen Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Biomedical Informatics, Harvard Medical School, Boston, MA 025 |
| authorships[3].author.id | https://openalex.org/A5003553217 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8783-7791 |
| authorships[3].author.display_name | Shreyas Havaldar |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I98704320 |
| authorships[3].affiliations[0].raw_affiliation_string | Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, NY 10029 |
| authorships[3].institutions[0].id | https://openalex.org/I98704320 |
| authorships[3].institutions[0].ror | https://ror.org/04a9tmd77 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I1320796813, https://openalex.org/I98704320 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Icahn School of Medicine at Mount Sinai |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Shreyas Havaldar |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, NY 10029 |
| authorships[4].author.id | https://openalex.org/A5042331995 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3343-744X |
| authorships[4].author.display_name | Akhil Vaid |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I98704320 |
| authorships[4].affiliations[0].raw_affiliation_string | Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, NY 10029 |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I98704320 |
| authorships[4].affiliations[1].raw_affiliation_string | Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, NY 10029 |
| authorships[4].institutions[0].id | https://openalex.org/I98704320 |
| authorships[4].institutions[0].ror | https://ror.org/04a9tmd77 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I1320796813, https://openalex.org/I98704320 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Icahn School of Medicine at Mount Sinai |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Akhil Vaid |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, NY 10029, Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, NY 10029 |
| authorships[5].author.id | https://openalex.org/A5091272738 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-5411-923X |
| authorships[5].author.display_name | Jure Leskovec |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Computer Science, Stanford University, Stanford, CA 9430 |
| authorships[5].institutions[0].id | https://openalex.org/I97018004 |
| authorships[5].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Stanford University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jure Leskovec |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Computer Science, Stanford University, Stanford, CA 9430 |
| authorships[6].author.id | https://openalex.org/A5047405500 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-6319-4314 |
| authorships[6].author.display_name | Girish N. Nadkarni |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I98704320 |
| authorships[6].affiliations[0].raw_affiliation_string | Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, NY 10029 |
| authorships[6].institutions[0].id | https://openalex.org/I98704320 |
| authorships[6].institutions[0].ror | https://ror.org/04a9tmd77 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I1320796813, https://openalex.org/I98704320 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Icahn School of Medicine at Mount Sinai |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Girish Nadkarni |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, NY 10029 |
| authorships[7].author.id | https://openalex.org/A5030539003 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-4515-8090 |
| authorships[7].author.display_name | Benjamin S. Glicksberg |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I98704320 |
| authorships[7].affiliations[0].raw_affiliation_string | Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, NY 10029 |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I98704320 |
| authorships[7].affiliations[1].raw_affiliation_string | Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, NY 10029 |
| authorships[7].institutions[0].id | https://openalex.org/I98704320 |
| authorships[7].institutions[0].ror | https://ror.org/04a9tmd77 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I1320796813, https://openalex.org/I98704320 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Icahn School of Medicine at Mount Sinai |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Benjamin S. Glicksberg |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, NY 10029, Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, NY 10029 |
| authorships[8].author.id | https://openalex.org/A5066335313 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-0327-8297 |
| authorships[8].author.display_name | Nils Gehlenborg |
| authorships[8].countries | US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I136199984 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Biomedical Informatics, Harvard Medical School, Boston, MA 025 |
| authorships[8].institutions[0].id | https://openalex.org/I136199984 |
| authorships[8].institutions[0].ror | https://ror.org/03vek6s52 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I136199984 |
| authorships[8].institutions[0].country_code | US |
| authorships[8].institutions[0].display_name | Harvard University |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Nils Gehlenborg |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Biomedical Informatics, Harvard Medical School, Boston, MA 025 |
| authorships[9].author.id | https://openalex.org/A5086052373 |
| authorships[9].author.orcid | https://orcid.org/0000-0001-8530-7228 |
| authorships[9].author.display_name | Marinka Žitnik |
| authorships[9].countries | US |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I107606265 |
| authorships[9].affiliations[0].raw_affiliation_string | Broad Institute of MIT and Harvard, Cambridge, MA 02142 |
| authorships[9].affiliations[1].institution_ids | https://openalex.org/I2801851002 |
| authorships[9].affiliations[1].raw_affiliation_string | Harvard Data Science Initiative, Cambridge, MA 02138 |
| authorships[9].affiliations[2].institution_ids | https://openalex.org/I136199984 |
| authorships[9].affiliations[2].raw_affiliation_string | Department of Biomedical Informatics, Harvard Medical School, Boston, MA 025 |
| authorships[9].institutions[0].id | https://openalex.org/I107606265 |
| authorships[9].institutions[0].ror | https://ror.org/05a0ya142 |
| authorships[9].institutions[0].type | nonprofit |
| authorships[9].institutions[0].lineage | https://openalex.org/I107606265 |
| authorships[9].institutions[0].country_code | US |
| authorships[9].institutions[0].display_name | Broad Institute |
| authorships[9].institutions[1].id | https://openalex.org/I136199984 |
| authorships[9].institutions[1].ror | https://ror.org/03vek6s52 |
| authorships[9].institutions[1].type | education |
| authorships[9].institutions[1].lineage | https://openalex.org/I136199984 |
| authorships[9].institutions[1].country_code | US |
| authorships[9].institutions[1].display_name | Harvard University |
| authorships[9].institutions[2].id | https://openalex.org/I2801851002 |
| authorships[9].institutions[2].ror | https://ror.org/006v7bf86 |
| authorships[9].institutions[2].type | other |
| authorships[9].institutions[2].lineage | https://openalex.org/I136199984, https://openalex.org/I2801851002 |
| authorships[9].institutions[2].country_code | US |
| authorships[9].institutions[2].display_name | Harvard University Press |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Marinka Zitnik |
| authorships[9].is_corresponding | True |
| authorships[9].raw_affiliation_strings | Broad Institute of MIT and Harvard, Cambridge, MA 02142, Department of Biomedical Informatics, Harvard Medical School, Boston, MA 025, Harvard Data Science Initiative, Cambridge, MA 02138 |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.medrxiv.org/content/medrxiv/early/2023/03/20/2023.03.19.23287458.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A foundation model for clinician-centered drug repurposing |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10211 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9866999983787537 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Computational Drug Discovery Methods |
| related_works | https://openalex.org/W2899096130, https://openalex.org/W3190782215, https://openalex.org/W2902729297, https://openalex.org/W3110500039, https://openalex.org/W4255531208, https://openalex.org/W4396858017, https://openalex.org/W4400165188, https://openalex.org/W4206422705, https://openalex.org/W4320009247, https://openalex.org/W3186872001 |
| cited_by_count | 14 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1101/2023.03.19.23287458 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2023/03/20/2023.03.19.23287458.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2023.03.19.23287458 |
| primary_location.id | doi:10.1101/2023.03.19.23287458 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2023/03/20/2023.03.19.23287458.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2023.03.19.23287458 |
| publication_date | 2023-03-20 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3095385778, https://openalex.org/W4256014735, https://openalex.org/W2896002881, https://openalex.org/W4281297752, https://openalex.org/W3118556611, https://openalex.org/W2145321215, https://openalex.org/W3017154096, https://openalex.org/W4318983406, https://openalex.org/W2056782561, https://openalex.org/W2950411297, https://openalex.org/W3100887812, https://openalex.org/W2083045667, https://openalex.org/W2062533676, https://openalex.org/W3158868742, https://openalex.org/W1990223774, https://openalex.org/W2786016794, https://openalex.org/W2263739890, https://openalex.org/W2922229918, https://openalex.org/W4381839562, https://openalex.org/W3095380161, https://openalex.org/W4304757966, https://openalex.org/W2604314403, https://openalex.org/W3012871709, https://openalex.org/W2911286998, https://openalex.org/W2911489562, https://openalex.org/W3026047280, https://openalex.org/W831206998, https://openalex.org/W2952984539, https://openalex.org/W3016970897, https://openalex.org/W4327813569, https://openalex.org/W4385567641, https://openalex.org/W2318802957, https://openalex.org/W2646300788, https://openalex.org/W4365515961, https://openalex.org/W3011881482, https://openalex.org/W2990435446, https://openalex.org/W4214710464, https://openalex.org/W3092119378, https://openalex.org/W2945719875, https://openalex.org/W2104450197, https://openalex.org/W2767891136, https://openalex.org/W3215148291, https://openalex.org/W4390571932, https://openalex.org/W2918341242, https://openalex.org/W1608814077, https://openalex.org/W2184957013, https://openalex.org/W2088263677, https://openalex.org/W3103934428 |
| referenced_works_count | 48 |
| abstract_inverted_index.T | 50, 81, 108, 130, 145, 153, 159, 176, 192 |
| abstract_inverted_index.a | 53, 77, 85, 188 |
| abstract_inverted_index.x | 51, 82, 109, 131, 146, 154, 160, 177, 193 |
| abstract_inverted_index.AI | 30 |
| abstract_inverted_index.To | 126 |
| abstract_inverted_index.as | 95 |
| abstract_inverted_index.be | 207 |
| abstract_inverted_index.by | 116, 120, 209 |
| abstract_inverted_index.in | 187 |
| abstract_inverted_index.is | 11 |
| abstract_inverted_index.no | 72 |
| abstract_inverted_index.of | 19, 27, 152, 170, 175 |
| abstract_inverted_index.on | 39, 76, 167 |
| abstract_inverted_index.or | 71 |
| abstract_inverted_index.to | 92 |
| abstract_inverted_index.we | 48 |
| abstract_inverted_index.GNN | 83, 110 |
| abstract_inverted_index.The | 24 |
| abstract_inverted_index.and | 14, 89, 98, 118, 163, 205 |
| abstract_inverted_index.are | 198 |
| abstract_inverted_index.can | 206 |
| abstract_inverted_index.for | 7, 21, 41, 57, 65, 114 |
| abstract_inverted_index.new | 4, 22 |
| abstract_inverted_index.the | 17, 35 |
| abstract_inverted_index.use | 18 |
| abstract_inverted_index.– | 2, 10 |
| abstract_inverted_index.Drug | 0 |
| abstract_inverted_index.GNN, | 52 |
| abstract_inverted_index.Many | 174 |
| abstract_inverted_index.When | 103 |
| abstract_inverted_index.axes | 169 |
| abstract_inverted_index.drug | 28, 59, 195, 203 |
| abstract_inverted_index.even | 64 |
| abstract_inverted_index.form | 144 |
| abstract_inverted_index.into | 138 |
| abstract_inverted_index.make | 186 |
| abstract_inverted_index.rank | 93 |
| abstract_inverted_index.some | 43 |
| abstract_inverted_index.that | 143, 158 |
| abstract_inverted_index.use, | 204 |
| abstract_inverted_index.uses | 6 |
| abstract_inverted_index.with | 67, 182, 201 |
| abstract_inverted_index.35.1% | 121 |
| abstract_inverted_index.49.2% | 117 |
| abstract_inverted_index.Here, | 47 |
| abstract_inverted_index.Human | 150 |
| abstract_inverted_index.align | 181 |
| abstract_inverted_index.drugs | 9, 20, 44, 94 |
| abstract_inverted_index.eight | 106 |
| abstract_inverted_index.focus | 37 |
| abstract_inverted_index.graph | 54, 86 |
| abstract_inverted_index.human | 210 |
| abstract_inverted_index.large | 189 |
| abstract_inverted_index.model | 56, 128 |
| abstract_inverted_index.novel | 179 |
| abstract_inverted_index.often | 12 |
| abstract_inverted_index.paths | 142 |
| abstract_inverted_index.under | 122 |
| abstract_inverted_index.which | 42 |
| abstract_inverted_index.17,080 | 101 |
| abstract_inverted_index.across | 100 |
| abstract_inverted_index.beyond | 172 |
| abstract_inverted_index.drugs. | 74 |
| abstract_inverted_index.exist. | 46 |
| abstract_inverted_index.graph, | 80 |
| abstract_inverted_index.models | 31, 36 |
| abstract_inverted_index.module | 91, 134 |
| abstract_inverted_index.neural | 87 |
| abstract_inverted_index.offers | 135 |
| abstract_inverted_index.showed | 157 |
| abstract_inverted_index.GNN’s | 132, 147, 155, 161, 178, 194 |
| abstract_inverted_index.Trained | 75 |
| abstract_inverted_index.against | 105 |
| abstract_inverted_index.already | 45 |
| abstract_inverted_index.because | 34 |
| abstract_inverted_index.experts | 211 |
| abstract_inverted_index.limited | 33, 68 |
| abstract_inverted_index.medical | 78, 140 |
| abstract_inverted_index.network | 88 |
| abstract_inverted_index.options | 70 |
| abstract_inverted_index.perform | 165 |
| abstract_inverted_index.remains | 32 |
| abstract_inverted_index.system. | 191 |
| abstract_inverted_index.through | 212 |
| abstract_inverted_index.utility | 26 |
| abstract_inverted_index.accuracy | 113 |
| abstract_inverted_index.approved | 8 |
| abstract_inverted_index.clinical | 25 |
| abstract_inverted_index.diseases | 40, 66 |
| abstract_inverted_index.existing | 73 |
| abstract_inverted_index.improves | 111 |
| abstract_inverted_index.insights | 137 |
| abstract_inverted_index.methods, | 107 |
| abstract_inverted_index.multiple | 168 |
| abstract_inverted_index.narrowly | 38 |
| abstract_inverted_index.utilizes | 84 |
| abstract_inverted_index.Explainer | 133, 156 |
| abstract_inverted_index.accuracy. | 173 |
| abstract_inverted_index.accurate, | 199 |
| abstract_inverted_index.diseases. | 23, 102 |
| abstract_inverted_index.expanding | 16 |
| abstract_inverted_index.introduce | 49 |
| abstract_inverted_index.knowledge | 79, 141 |
| abstract_inverted_index.multi-hop | 139, 213 |
| abstract_inverted_index.off-label | 183, 202 |
| abstract_inverted_index.potential | 96 |
| abstract_inverted_index.stringent | 123 |
| abstract_inverted_index.treatment | 69 |
| abstract_inverted_index.zero-shot | 58, 124 |
| abstract_inverted_index.candidates | 63 |
| abstract_inverted_index.clinicians | 185 |
| abstract_inverted_index.consistent | 200 |
| abstract_inverted_index.evaluation | 151 |
| abstract_inverted_index.facilitate | 127 |
| abstract_inverted_index.foundation | 55 |
| abstract_inverted_index.healthcare | 190 |
| abstract_inverted_index.prediction | 112 |
| abstract_inverted_index.predictive | 148 |
| abstract_inverted_index.benchmarked | 104 |
| abstract_inverted_index.evaluation. | 125 |
| abstract_inverted_index.identifying | 3, 61 |
| abstract_inverted_index.indications | 97, 115 |
| abstract_inverted_index.performance | 171 |
| abstract_inverted_index.predictions | 162, 180, 197 |
| abstract_inverted_index.rationales. | 149, 215 |
| abstract_inverted_index.repurposing | 1, 29, 196 |
| abstract_inverted_index.therapeutic | 5, 62 |
| abstract_inverted_index.transparent | 136 |
| abstract_inverted_index.explanations | 164 |
| abstract_inverted_index.investigated | 208 |
| abstract_inverted_index.repurposing, | 60 |
| abstract_inverted_index.encouragingly | 166 |
| abstract_inverted_index.interpretable | 214 |
| abstract_inverted_index.prescriptions | 184 |
| abstract_inverted_index.serendipitous | 13 |
| abstract_inverted_index.opportunistic, | 15 |
| abstract_inverted_index.interpretation, | 129 |
| abstract_inverted_index.metric-learning | 90 |
| abstract_inverted_index.contraindications | 99, 119 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5086052373 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 10 |
| corresponding_institution_ids | https://openalex.org/I107606265, https://openalex.org/I136199984, https://openalex.org/I2801851002 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.5600000023841858 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.93290654 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |