A framework for mining lifestyle profiles through multi-dimensional and high-order mobility feature clustering Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2312.00411
Human mobility demonstrates a high degree of regularity, which facilitates the discovery of lifestyle profiles. Existing research has yet to fully utilize the regularities embedded in high-order features extracted from human mobility records in such profiling. This study proposes a progressive feature extraction strategy that mines high-order mobility features from users' moving trajectory records from the spatial, temporal, and semantic dimensions. Specific features are extracted such as travel motifs, rhythms decomposed by discrete Fourier transform (DFT) of mobility time series, and vectorized place semantics by word2vec, respectively to the three dimensions, and they are further clustered to reveal the users' lifestyle characteristics. An experiment using a trajectory dataset of over 500k users in Shenzhen, China yields seven user clusters with different lifestyle profiles that can be well interpreted by common sense. The results suggest the possibility of fine-grained user profiling through cross-order trajectory feature engineering and clustering.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2312.00411
- https://arxiv.org/pdf/2312.00411
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4389325872
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4389325872Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2312.00411Digital Object Identifier
- Title
-
A framework for mining lifestyle profiles through multi-dimensional and high-order mobility feature clusteringWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-01Full publication date if available
- Authors
-
Yeshuo Shu, Gangcheng Zhang, Keyi Liu, Jintong Tang, Liyan XuList of authors in order
- Landing page
-
https://arxiv.org/abs/2312.00411Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2312.00411Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2312.00411Direct OA link when available
- Concepts
-
Profiling (computer programming), Cluster analysis, Computer science, Data mining, Word2vec, Trajectory, Feature extraction, Artificial intelligence, Physics, Operating system, Embedding, AstronomyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4389325872 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2312.00411 |
| ids.doi | https://doi.org/10.48550/arxiv.2312.00411 |
| ids.openalex | https://openalex.org/W4389325872 |
| fwci | |
| type | preprint |
| title | A framework for mining lifestyle profiles through multi-dimensional and high-order mobility feature clustering |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11980 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3313 |
| topics[0].subfield.display_name | Transportation |
| topics[0].display_name | Human Mobility and Location-Based Analysis |
| topics[1].id | https://openalex.org/T10757 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9708999991416931 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3305 |
| topics[1].subfield.display_name | Geography, Planning and Development |
| topics[1].display_name | Geographic Information Systems Studies |
| topics[2].id | https://openalex.org/T11819 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9623000025749207 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2713 |
| topics[2].subfield.display_name | Epidemiology |
| topics[2].display_name | Data-Driven Disease Surveillance |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C187191949 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7783344984054565 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1138496 |
| concepts[0].display_name | Profiling (computer programming) |
| concepts[1].id | https://openalex.org/C73555534 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7174988389015198 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[1].display_name | Cluster analysis |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6768754720687866 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C124101348 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5425016283988953 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[3].display_name | Data mining |
| concepts[4].id | https://openalex.org/C2776461190 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4798016846179962 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q22673982 |
| concepts[4].display_name | Word2vec |
| concepts[5].id | https://openalex.org/C13662910 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4584178328514099 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q193139 |
| concepts[5].display_name | Trajectory |
| concepts[6].id | https://openalex.org/C52622490 |
| concepts[6].level | 2 |
| concepts[6].score | 0.42860284447669983 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[6].display_name | Feature extraction |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.33110159635543823 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C121332964 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[8].display_name | Physics |
| concepts[9].id | https://openalex.org/C111919701 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[9].display_name | Operating system |
| concepts[10].id | https://openalex.org/C41608201 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[10].display_name | Embedding |
| concepts[11].id | https://openalex.org/C1276947 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q333 |
| concepts[11].display_name | Astronomy |
| keywords[0].id | https://openalex.org/keywords/profiling |
| keywords[0].score | 0.7783344984054565 |
| keywords[0].display_name | Profiling (computer programming) |
| keywords[1].id | https://openalex.org/keywords/cluster-analysis |
| keywords[1].score | 0.7174988389015198 |
| keywords[1].display_name | Cluster analysis |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6768754720687866 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/data-mining |
| keywords[3].score | 0.5425016283988953 |
| keywords[3].display_name | Data mining |
| keywords[4].id | https://openalex.org/keywords/word2vec |
| keywords[4].score | 0.4798016846179962 |
| keywords[4].display_name | Word2vec |
| keywords[5].id | https://openalex.org/keywords/trajectory |
| keywords[5].score | 0.4584178328514099 |
| keywords[5].display_name | Trajectory |
| keywords[6].id | https://openalex.org/keywords/feature-extraction |
| keywords[6].score | 0.42860284447669983 |
| keywords[6].display_name | Feature extraction |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.33110159635543823 |
| keywords[7].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2312.00411 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2312.00411 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2312.00411 |
| locations[1].id | doi:10.48550/arxiv.2312.00411 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2312.00411 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5111086461 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Yeshuo Shu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shu, Yeshuo |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5059040089 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0202-3946 |
| authorships[1].author.display_name | Gangcheng Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhang, Gangcheng |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5107002821 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Keyi Liu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Liu, Keyi |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5113062779 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Jintong Tang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tang, Jintong |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100297643 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Liyan Xu |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Xu, Liyan |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2312.00411 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A framework for mining lifestyle profiles through multi-dimensional and high-order mobility feature clustering |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11980 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3313 |
| primary_topic.subfield.display_name | Transportation |
| primary_topic.display_name | Human Mobility and Location-Based Analysis |
| related_works | https://openalex.org/W2980729574, https://openalex.org/W1560851690, https://openalex.org/W3092047717, https://openalex.org/W4390881630, https://openalex.org/W2770162183, https://openalex.org/W3110772647, https://openalex.org/W2947721150, https://openalex.org/W2894231409, https://openalex.org/W3127365535, https://openalex.org/W2995297654 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2312.00411 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2312.00411 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2312.00411 |
| primary_location.id | pmh:oai:arXiv.org:2312.00411 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2312.00411 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2312.00411 |
| publication_date | 2023-12-01 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 39, 105 |
| abstract_inverted_index.An | 102 |
| abstract_inverted_index.as | 66 |
| abstract_inverted_index.be | 125 |
| abstract_inverted_index.by | 71, 84, 128 |
| abstract_inverted_index.in | 25, 33, 112 |
| abstract_inverted_index.of | 6, 12, 76, 108, 136 |
| abstract_inverted_index.to | 19, 87, 96 |
| abstract_inverted_index.The | 131 |
| abstract_inverted_index.and | 58, 80, 91, 145 |
| abstract_inverted_index.are | 63, 93 |
| abstract_inverted_index.can | 124 |
| abstract_inverted_index.has | 17 |
| abstract_inverted_index.the | 10, 22, 55, 88, 98, 134 |
| abstract_inverted_index.yet | 18 |
| abstract_inverted_index.500k | 110 |
| abstract_inverted_index.This | 36 |
| abstract_inverted_index.from | 29, 49, 54 |
| abstract_inverted_index.high | 4 |
| abstract_inverted_index.over | 109 |
| abstract_inverted_index.such | 34, 65 |
| abstract_inverted_index.that | 44, 123 |
| abstract_inverted_index.they | 92 |
| abstract_inverted_index.time | 78 |
| abstract_inverted_index.user | 117, 138 |
| abstract_inverted_index.well | 126 |
| abstract_inverted_index.with | 119 |
| abstract_inverted_index.(DFT) | 75 |
| abstract_inverted_index.China | 114 |
| abstract_inverted_index.Human | 0 |
| abstract_inverted_index.fully | 20 |
| abstract_inverted_index.human | 30 |
| abstract_inverted_index.mines | 45 |
| abstract_inverted_index.place | 82 |
| abstract_inverted_index.seven | 116 |
| abstract_inverted_index.study | 37 |
| abstract_inverted_index.three | 89 |
| abstract_inverted_index.users | 111 |
| abstract_inverted_index.using | 104 |
| abstract_inverted_index.which | 8 |
| abstract_inverted_index.common | 129 |
| abstract_inverted_index.degree | 5 |
| abstract_inverted_index.moving | 51 |
| abstract_inverted_index.reveal | 97 |
| abstract_inverted_index.sense. | 130 |
| abstract_inverted_index.travel | 67 |
| abstract_inverted_index.users' | 50, 99 |
| abstract_inverted_index.yields | 115 |
| abstract_inverted_index.Fourier | 73 |
| abstract_inverted_index.dataset | 107 |
| abstract_inverted_index.feature | 41, 143 |
| abstract_inverted_index.further | 94 |
| abstract_inverted_index.motifs, | 68 |
| abstract_inverted_index.records | 32, 53 |
| abstract_inverted_index.results | 132 |
| abstract_inverted_index.rhythms | 69 |
| abstract_inverted_index.series, | 79 |
| abstract_inverted_index.suggest | 133 |
| abstract_inverted_index.through | 140 |
| abstract_inverted_index.utilize | 21 |
| abstract_inverted_index.Existing | 15 |
| abstract_inverted_index.Specific | 61 |
| abstract_inverted_index.clusters | 118 |
| abstract_inverted_index.discrete | 72 |
| abstract_inverted_index.embedded | 24 |
| abstract_inverted_index.features | 27, 48, 62 |
| abstract_inverted_index.mobility | 1, 31, 47, 77 |
| abstract_inverted_index.profiles | 122 |
| abstract_inverted_index.proposes | 38 |
| abstract_inverted_index.research | 16 |
| abstract_inverted_index.semantic | 59 |
| abstract_inverted_index.spatial, | 56 |
| abstract_inverted_index.strategy | 43 |
| abstract_inverted_index.Shenzhen, | 113 |
| abstract_inverted_index.clustered | 95 |
| abstract_inverted_index.different | 120 |
| abstract_inverted_index.discovery | 11 |
| abstract_inverted_index.extracted | 28, 64 |
| abstract_inverted_index.lifestyle | 13, 100, 121 |
| abstract_inverted_index.profiles. | 14 |
| abstract_inverted_index.profiling | 139 |
| abstract_inverted_index.semantics | 83 |
| abstract_inverted_index.temporal, | 57 |
| abstract_inverted_index.transform | 74 |
| abstract_inverted_index.word2vec, | 85 |
| abstract_inverted_index.decomposed | 70 |
| abstract_inverted_index.experiment | 103 |
| abstract_inverted_index.extraction | 42 |
| abstract_inverted_index.high-order | 26, 46 |
| abstract_inverted_index.profiling. | 35 |
| abstract_inverted_index.trajectory | 52, 106, 142 |
| abstract_inverted_index.vectorized | 81 |
| abstract_inverted_index.clustering. | 146 |
| abstract_inverted_index.cross-order | 141 |
| abstract_inverted_index.dimensions, | 90 |
| abstract_inverted_index.dimensions. | 60 |
| abstract_inverted_index.engineering | 144 |
| abstract_inverted_index.facilitates | 9 |
| abstract_inverted_index.interpreted | 127 |
| abstract_inverted_index.possibility | 135 |
| abstract_inverted_index.progressive | 40 |
| abstract_inverted_index.regularity, | 7 |
| abstract_inverted_index.demonstrates | 2 |
| abstract_inverted_index.fine-grained | 137 |
| abstract_inverted_index.regularities | 23 |
| abstract_inverted_index.respectively | 86 |
| abstract_inverted_index.characteristics. | 101 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |