A gene regulatory network–aware graph learning method for cell identity annotation in single-cell RNA-seq data Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1101/gr.278439.123
Cell identity annotation for single-cell transcriptome data is a crucial process for constructing cell atlases, unraveling pathogenesis, and inspiring therapeutic approaches. Currently, the efficacy of existing methodologies is contingent upon specific data sets. Nevertheless, such data are often sourced from various batches, sequencing technologies, tissues, and even species. Notably, the gene regulatory relationship remains unaffected by the aforementioned factors, highlighting the extensive gene interactions within organisms. Therefore, we propose scHGR, an automated annotation tool designed to leverage gene regulatory relationships in constructing gene-mediated cell communication graphs for single-cell transcriptome data. This strategy helps reduce noise from diverse data sources while establishing distant cellular connections, yielding valuable biological insights. Experiments involving 22 scenarios demonstrate that scHGR precisely and consistently annotates cell identities, benchmarked against state-of-the-art methods. Crucially, scHGR uncovers novel subtypes within peripheral blood mononuclear cells, specifically from CD4 + T cells and cytotoxic T cells. Furthermore, by characterizing a cell atlas comprising 56 cell types for COVID-19 patients, scHGR identifies vital factors like IL1 and calcium ions, offering insights for targeted therapeutic interventions.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1101/gr.278439.123
- OA Status
- green
- Cited By
- 9
- References
- 66
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401503596
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401503596Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/gr.278439.123Digital Object Identifier
- Title
-
A gene regulatory network–aware graph learning method for cell identity annotation in single-cell RNA-seq dataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-01Full publication date if available
- Authors
-
Mengyuan Zhao, Jiawei Li, Xiaoyi Liu, Ke Ma, Jijun Tang, Fei GuoList of authors in order
- Landing page
-
https://doi.org/10.1101/gr.278439.123Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.ncbi.nlm.nih.gov/pmc/articles/11368180Direct OA link when available
- Concepts
-
Biology, Annotation, Transcriptome, Computational biology, Leverage (statistics), Gene regulatory network, Gene, RNA-Seq, Gene Annotation, Genetics, Gene expression, Computer science, Genome, Machine learningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 9Per-year citation counts (last 5 years)
- References (count)
-
66Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401503596 |
|---|---|
| doi | https://doi.org/10.1101/gr.278439.123 |
| ids.doi | https://doi.org/10.1101/gr.278439.123 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39134412 |
| ids.openalex | https://openalex.org/W4401503596 |
| fwci | 4.32222503 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | Q000378 |
| mesh[1].descriptor_ui | D015496 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | metabolism |
| mesh[1].descriptor_name | CD4-Positive T-Lymphocytes |
| mesh[2].qualifier_ui | Q000235 |
| mesh[2].descriptor_ui | D000086382 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | genetics |
| mesh[2].descriptor_name | COVID-19 |
| mesh[3].qualifier_ui | Q000821 |
| mesh[3].descriptor_ui | D000086382 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | virology |
| mesh[3].descriptor_name | COVID-19 |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D053263 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Gene Regulatory Networks |
| mesh[5].qualifier_ui | Q000378 |
| mesh[5].descriptor_ui | D007963 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | metabolism |
| mesh[5].descriptor_name | Leukocytes, Mononuclear |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D058977 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Molecular Sequence Annotation |
| mesh[7].qualifier_ui | Q000379 |
| mesh[7].descriptor_ui | D000081246 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | methods |
| mesh[7].descriptor_name | RNA-Seq |
| mesh[8].qualifier_ui | Q000235 |
| mesh[8].descriptor_ui | D000086402 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | genetics |
| mesh[8].descriptor_name | SARS-CoV-2 |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000092386 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Single-Cell Gene Expression Analysis |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D059467 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Transcriptome |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D006801 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Humans |
| mesh[12].qualifier_ui | Q000378 |
| mesh[12].descriptor_ui | D015496 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | metabolism |
| mesh[12].descriptor_name | CD4-Positive T-Lymphocytes |
| mesh[13].qualifier_ui | Q000235 |
| mesh[13].descriptor_ui | D000086382 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | genetics |
| mesh[13].descriptor_name | COVID-19 |
| mesh[14].qualifier_ui | Q000821 |
| mesh[14].descriptor_ui | D000086382 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | virology |
| mesh[14].descriptor_name | COVID-19 |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D053263 |
| mesh[15].is_major_topic | True |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Gene Regulatory Networks |
| mesh[16].qualifier_ui | Q000378 |
| mesh[16].descriptor_ui | D007963 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | metabolism |
| mesh[16].descriptor_name | Leukocytes, Mononuclear |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D058977 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Molecular Sequence Annotation |
| mesh[18].qualifier_ui | Q000379 |
| mesh[18].descriptor_ui | D000081246 |
| mesh[18].is_major_topic | True |
| mesh[18].qualifier_name | methods |
| mesh[18].descriptor_name | RNA-Seq |
| mesh[19].qualifier_ui | Q000235 |
| mesh[19].descriptor_ui | D000086402 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | genetics |
| mesh[19].descriptor_name | SARS-CoV-2 |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D000092386 |
| mesh[20].is_major_topic | True |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Single-Cell Gene Expression Analysis |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D059467 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Transcriptome |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D006801 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Humans |
| mesh[23].qualifier_ui | Q000378 |
| mesh[23].descriptor_ui | D015496 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | metabolism |
| mesh[23].descriptor_name | CD4-Positive T-Lymphocytes |
| mesh[24].qualifier_ui | Q000235 |
| mesh[24].descriptor_ui | D000086382 |
| mesh[24].is_major_topic | True |
| mesh[24].qualifier_name | genetics |
| mesh[24].descriptor_name | COVID-19 |
| mesh[25].qualifier_ui | Q000821 |
| mesh[25].descriptor_ui | D000086382 |
| mesh[25].is_major_topic | True |
| mesh[25].qualifier_name | virology |
| mesh[25].descriptor_name | COVID-19 |
| mesh[26].qualifier_ui | |
| mesh[26].descriptor_ui | D053263 |
| mesh[26].is_major_topic | True |
| mesh[26].qualifier_name | |
| mesh[26].descriptor_name | Gene Regulatory Networks |
| mesh[27].qualifier_ui | Q000378 |
| mesh[27].descriptor_ui | D007963 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | metabolism |
| mesh[27].descriptor_name | Leukocytes, Mononuclear |
| mesh[28].qualifier_ui | |
| mesh[28].descriptor_ui | D058977 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | |
| mesh[28].descriptor_name | Molecular Sequence Annotation |
| mesh[29].qualifier_ui | Q000379 |
| mesh[29].descriptor_ui | D000081246 |
| mesh[29].is_major_topic | True |
| mesh[29].qualifier_name | methods |
| mesh[29].descriptor_name | RNA-Seq |
| mesh[30].qualifier_ui | Q000235 |
| mesh[30].descriptor_ui | D000086402 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | genetics |
| mesh[30].descriptor_name | SARS-CoV-2 |
| mesh[31].qualifier_ui | |
| mesh[31].descriptor_ui | D000092386 |
| mesh[31].is_major_topic | True |
| mesh[31].qualifier_name | |
| mesh[31].descriptor_name | Single-Cell Gene Expression Analysis |
| mesh[32].qualifier_ui | |
| mesh[32].descriptor_ui | D059467 |
| mesh[32].is_major_topic | False |
| mesh[32].qualifier_name | |
| mesh[32].descriptor_name | Transcriptome |
| mesh[33].qualifier_ui | |
| mesh[33].descriptor_ui | D006801 |
| mesh[33].is_major_topic | False |
| mesh[33].qualifier_name | |
| mesh[33].descriptor_name | Humans |
| mesh[34].qualifier_ui | Q000378 |
| mesh[34].descriptor_ui | D015496 |
| mesh[34].is_major_topic | False |
| mesh[34].qualifier_name | metabolism |
| mesh[34].descriptor_name | CD4-Positive T-Lymphocytes |
| mesh[35].qualifier_ui | Q000235 |
| mesh[35].descriptor_ui | D000086382 |
| mesh[35].is_major_topic | True |
| mesh[35].qualifier_name | genetics |
| mesh[35].descriptor_name | COVID-19 |
| mesh[36].qualifier_ui | Q000821 |
| mesh[36].descriptor_ui | D000086382 |
| mesh[36].is_major_topic | True |
| mesh[36].qualifier_name | virology |
| mesh[36].descriptor_name | COVID-19 |
| mesh[37].qualifier_ui | |
| mesh[37].descriptor_ui | D053263 |
| mesh[37].is_major_topic | True |
| mesh[37].qualifier_name | |
| mesh[37].descriptor_name | Gene Regulatory Networks |
| mesh[38].qualifier_ui | Q000378 |
| mesh[38].descriptor_ui | D007963 |
| mesh[38].is_major_topic | False |
| mesh[38].qualifier_name | metabolism |
| mesh[38].descriptor_name | Leukocytes, Mononuclear |
| mesh[39].qualifier_ui | |
| mesh[39].descriptor_ui | D058977 |
| mesh[39].is_major_topic | False |
| mesh[39].qualifier_name | |
| mesh[39].descriptor_name | Molecular Sequence Annotation |
| mesh[40].qualifier_ui | Q000379 |
| mesh[40].descriptor_ui | D000081246 |
| mesh[40].is_major_topic | True |
| mesh[40].qualifier_name | methods |
| mesh[40].descriptor_name | RNA-Seq |
| mesh[41].qualifier_ui | Q000235 |
| mesh[41].descriptor_ui | D000086402 |
| mesh[41].is_major_topic | False |
| mesh[41].qualifier_name | genetics |
| mesh[41].descriptor_name | SARS-CoV-2 |
| mesh[42].qualifier_ui | |
| mesh[42].descriptor_ui | D000092386 |
| mesh[42].is_major_topic | True |
| mesh[42].qualifier_name | |
| mesh[42].descriptor_name | Single-Cell Gene Expression Analysis |
| mesh[43].qualifier_ui | |
| mesh[43].descriptor_ui | D059467 |
| mesh[43].is_major_topic | False |
| mesh[43].qualifier_name | |
| mesh[43].descriptor_name | Transcriptome |
| mesh[44].qualifier_ui | |
| mesh[44].descriptor_ui | D006801 |
| mesh[44].is_major_topic | False |
| mesh[44].qualifier_name | |
| mesh[44].descriptor_name | Humans |
| mesh[45].qualifier_ui | Q000379 |
| mesh[45].descriptor_ui | D059010 |
| mesh[45].is_major_topic | True |
| mesh[45].qualifier_name | methods |
| mesh[45].descriptor_name | Single-Cell Analysis |
| mesh[46].qualifier_ui | |
| mesh[46].descriptor_ui | D053263 |
| mesh[46].is_major_topic | True |
| mesh[46].qualifier_name | |
| mesh[46].descriptor_name | Gene Regulatory Networks |
| mesh[47].qualifier_ui | Q000235 |
| mesh[47].descriptor_ui | D000086382 |
| mesh[47].is_major_topic | True |
| mesh[47].qualifier_name | genetics |
| mesh[47].descriptor_name | COVID-19 |
| mesh[48].qualifier_ui | Q000821 |
| mesh[48].descriptor_ui | D000086382 |
| mesh[48].is_major_topic | True |
| mesh[48].qualifier_name | virology |
| mesh[48].descriptor_name | COVID-19 |
| mesh[49].qualifier_ui | Q000379 |
| mesh[49].descriptor_ui | D000081246 |
| mesh[49].is_major_topic | True |
| mesh[49].qualifier_name | methods |
| mesh[49].descriptor_name | RNA-Seq |
| type | article |
| title | A gene regulatory network–aware graph learning method for cell identity annotation in single-cell RNA-seq data |
| awards[0].id | https://openalex.org/G2147514142 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 62172296 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G5180699992 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | NSFC 62322215 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 7 |
| biblio.volume | 34 |
| biblio.last_page | 1051 |
| biblio.first_page | 1036 |
| topics[0].id | https://openalex.org/T11289 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Single-cell and spatial transcriptomics |
| topics[1].id | https://openalex.org/T10887 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9977999925613403 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Bioinformatics and Genomic Networks |
| topics[2].id | https://openalex.org/T10621 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9973999857902527 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Gene Regulatory Network Analysis |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C86803240 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8029537200927734 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[0].display_name | Biology |
| concepts[1].id | https://openalex.org/C2776321320 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7077397108078003 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q857525 |
| concepts[1].display_name | Annotation |
| concepts[2].id | https://openalex.org/C162317418 |
| concepts[2].level | 4 |
| concepts[2].score | 0.6709549427032471 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q252857 |
| concepts[2].display_name | Transcriptome |
| concepts[3].id | https://openalex.org/C70721500 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6611015796661377 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[3].display_name | Computational biology |
| concepts[4].id | https://openalex.org/C153083717 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5901800394058228 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q6535263 |
| concepts[4].display_name | Leverage (statistics) |
| concepts[5].id | https://openalex.org/C67339327 |
| concepts[5].level | 4 |
| concepts[5].score | 0.5022237300872803 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1502576 |
| concepts[5].display_name | Gene regulatory network |
| concepts[6].id | https://openalex.org/C104317684 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4781978130340576 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[6].display_name | Gene |
| concepts[7].id | https://openalex.org/C107397762 |
| concepts[7].level | 5 |
| concepts[7].score | 0.45325806736946106 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2542347 |
| concepts[7].display_name | RNA-Seq |
| concepts[8].id | https://openalex.org/C2908923196 |
| concepts[8].level | 4 |
| concepts[8].score | 0.42437589168548584 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5205742 |
| concepts[8].display_name | Gene Annotation |
| concepts[9].id | https://openalex.org/C54355233 |
| concepts[9].level | 1 |
| concepts[9].score | 0.2907143235206604 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[9].display_name | Genetics |
| concepts[10].id | https://openalex.org/C150194340 |
| concepts[10].level | 3 |
| concepts[10].score | 0.26294463872909546 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q26972 |
| concepts[10].display_name | Gene expression |
| concepts[11].id | https://openalex.org/C41008148 |
| concepts[11].level | 0 |
| concepts[11].score | 0.24628275632858276 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[11].display_name | Computer science |
| concepts[12].id | https://openalex.org/C141231307 |
| concepts[12].level | 3 |
| concepts[12].score | 0.21569818258285522 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7020 |
| concepts[12].display_name | Genome |
| concepts[13].id | https://openalex.org/C119857082 |
| concepts[13].level | 1 |
| concepts[13].score | 0.15116775035858154 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[13].display_name | Machine learning |
| keywords[0].id | https://openalex.org/keywords/biology |
| keywords[0].score | 0.8029537200927734 |
| keywords[0].display_name | Biology |
| keywords[1].id | https://openalex.org/keywords/annotation |
| keywords[1].score | 0.7077397108078003 |
| keywords[1].display_name | Annotation |
| keywords[2].id | https://openalex.org/keywords/transcriptome |
| keywords[2].score | 0.6709549427032471 |
| keywords[2].display_name | Transcriptome |
| keywords[3].id | https://openalex.org/keywords/computational-biology |
| keywords[3].score | 0.6611015796661377 |
| keywords[3].display_name | Computational biology |
| keywords[4].id | https://openalex.org/keywords/leverage |
| keywords[4].score | 0.5901800394058228 |
| keywords[4].display_name | Leverage (statistics) |
| keywords[5].id | https://openalex.org/keywords/gene-regulatory-network |
| keywords[5].score | 0.5022237300872803 |
| keywords[5].display_name | Gene regulatory network |
| keywords[6].id | https://openalex.org/keywords/gene |
| keywords[6].score | 0.4781978130340576 |
| keywords[6].display_name | Gene |
| keywords[7].id | https://openalex.org/keywords/rna-seq |
| keywords[7].score | 0.45325806736946106 |
| keywords[7].display_name | RNA-Seq |
| keywords[8].id | https://openalex.org/keywords/gene-annotation |
| keywords[8].score | 0.42437589168548584 |
| keywords[8].display_name | Gene Annotation |
| keywords[9].id | https://openalex.org/keywords/genetics |
| keywords[9].score | 0.2907143235206604 |
| keywords[9].display_name | Genetics |
| keywords[10].id | https://openalex.org/keywords/gene-expression |
| keywords[10].score | 0.26294463872909546 |
| keywords[10].display_name | Gene expression |
| keywords[11].id | https://openalex.org/keywords/computer-science |
| keywords[11].score | 0.24628275632858276 |
| keywords[11].display_name | Computer science |
| keywords[12].id | https://openalex.org/keywords/genome |
| keywords[12].score | 0.21569818258285522 |
| keywords[12].display_name | Genome |
| keywords[13].id | https://openalex.org/keywords/machine-learning |
| keywords[13].score | 0.15116775035858154 |
| keywords[13].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.1101/gr.278439.123 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S43092948 |
| locations[0].source.issn | 1088-9051, 1549-5469 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1088-9051 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Genome Research |
| locations[0].source.host_organization | https://openalex.org/P4310315909 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315909 |
| locations[0].source.host_organization_lineage_names | Cold Spring Harbor Laboratory Press |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Genome Research |
| locations[0].landing_page_url | https://doi.org/10.1101/gr.278439.123 |
| locations[1].id | pmid:39134412 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Genome research |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39134412 |
| locations[2].id | pmh:oai:open-archive.highwire.org:genome:34/7/1036 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306402567 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[2].source.host_organization | https://openalex.org/I2750212522 |
| locations[2].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[2].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | TEXT |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://genome.cshlp.org/cgi/content/short/34/7/1036 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11368180 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Genome Res |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11368180 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5104652286 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4913-132X |
| authorships[0].author.display_name | Mengyuan Zhao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I19820366 |
| authorships[0].affiliations[0].raw_affiliation_string | 2University of Chinese Academy of Sciences, Beijing 100190, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[0].affiliations[1].raw_affiliation_string | 1College of Computer Science and Control Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China |
| authorships[0].institutions[0].id | https://openalex.org/I19820366 |
| authorships[0].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[0].institutions[1].id | https://openalex.org/I4210145761 |
| authorships[0].institutions[1].ror | https://ror.org/04gh4er46 |
| authorships[0].institutions[1].type | facility |
| authorships[0].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Shenzhen Institutes of Advanced Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mengyuan Zhao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | 1College of Computer Science and Control Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China, 2University of Chinese Academy of Sciences, Beijing 100190, China |
| authorships[1].author.id | https://openalex.org/A5081917322 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4620-2500 |
| authorships[1].author.display_name | Jiawei Li |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I162868743 |
| authorships[1].affiliations[0].raw_affiliation_string | 3College of Intelligence and Computing, Tianjin University, Tianjin 300350, China |
| authorships[1].institutions[0].id | https://openalex.org/I162868743 |
| authorships[1].institutions[0].ror | https://ror.org/012tb2g32 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I162868743 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Tianjin University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jiawei Li |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | 3College of Intelligence and Computing, Tianjin University, Tianjin 300350, China |
| authorships[2].author.id | https://openalex.org/A5110883523 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Xiaoyi Liu |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I155781252 |
| authorships[2].affiliations[0].raw_affiliation_string | 4Computer Science and Engineering, University of South Carolina, Columbia, South Carolina 29208, USA |
| authorships[2].institutions[0].id | https://openalex.org/I155781252 |
| authorships[2].institutions[0].ror | https://ror.org/02b6qw903 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I155781252 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of South Carolina |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xiaoyi Liu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | 4Computer Science and Engineering, University of South Carolina, Columbia, South Carolina 29208, USA |
| authorships[3].author.id | https://openalex.org/A5107835272 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Ke Ma |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I3045169105 |
| authorships[3].affiliations[0].raw_affiliation_string | 5College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China |
| authorships[3].institutions[0].id | https://openalex.org/I3045169105 |
| authorships[3].institutions[0].ror | https://ror.org/049tv2d57 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I3045169105 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Southern University of Science and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ke Ma |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | 5College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China |
| authorships[4].author.id | https://openalex.org/A5001619694 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6377-536X |
| authorships[4].author.display_name | Jijun Tang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[4].affiliations[0].raw_affiliation_string | 1College of Computer Science and Control Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China |
| authorships[4].institutions[0].id | https://openalex.org/I19820366 |
| authorships[4].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[4].institutions[0].type | government |
| authorships[4].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[4].institutions[1].id | https://openalex.org/I4210145761 |
| authorships[4].institutions[1].ror | https://ror.org/04gh4er46 |
| authorships[4].institutions[1].type | facility |
| authorships[4].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Shenzhen Institutes of Advanced Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jijun Tang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | 1College of Computer Science and Control Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China |
| authorships[5].author.id | https://openalex.org/A5100702161 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8346-0798 |
| authorships[5].author.display_name | Fei Guo |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I139660479 |
| authorships[5].affiliations[0].raw_affiliation_string | 6School of Computer Science and Engineering, Central South University, Changsha 410083, China |
| authorships[5].institutions[0].id | https://openalex.org/I139660479 |
| authorships[5].institutions[0].ror | https://ror.org/00f1zfq44 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I139660479 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Central South University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Fei Guo |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | 6School of Computer Science and Engineering, Central South University, Changsha 410083, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11368180 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A gene regulatory network–aware graph learning method for cell identity annotation in single-cell RNA-seq data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11289 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Single-cell and spatial transcriptomics |
| related_works | https://openalex.org/W2059565715, https://openalex.org/W2901823680, https://openalex.org/W2009940763, https://openalex.org/W4386637333, https://openalex.org/W2946410450, https://openalex.org/W4361192415, https://openalex.org/W2126804125, https://openalex.org/W2162782320, https://openalex.org/W2137318037, https://openalex.org/W1760213857 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 9 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:pubmedcentral.nih.gov:11368180 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764455111 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PubMed Central |
| best_oa_location.source.host_organization | https://openalex.org/I1299303238 |
| best_oa_location.source.host_organization_name | National Institutes of Health |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | Genome Res |
| best_oa_location.landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11368180 |
| primary_location.id | doi:10.1101/gr.278439.123 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S43092948 |
| primary_location.source.issn | 1088-9051, 1549-5469 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1088-9051 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Genome Research |
| primary_location.source.host_organization | https://openalex.org/P4310315909 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315909 |
| primary_location.source.host_organization_lineage_names | Cold Spring Harbor Laboratory Press |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Genome Research |
| primary_location.landing_page_url | https://doi.org/10.1101/gr.278439.123 |
| publication_date | 2024-07-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2971653850, https://openalex.org/W4280626556, https://openalex.org/W2616922646, https://openalex.org/W3159800610, https://openalex.org/W3099810371, https://openalex.org/W4283588821, https://openalex.org/W2523620612, https://openalex.org/W4213136259, https://openalex.org/W3037544553, https://openalex.org/W3154892317, https://openalex.org/W4309340881, https://openalex.org/W3015184839, https://openalex.org/W3003185417, https://openalex.org/W2782454362, https://openalex.org/W3013151148, https://openalex.org/W2969948459, https://openalex.org/W2943958755, https://openalex.org/W2076513103, https://openalex.org/W3132661792, https://openalex.org/W3006650868, https://openalex.org/W4319591822, https://openalex.org/W3105908160, https://openalex.org/W3184208286, https://openalex.org/W4245634252, https://openalex.org/W3024643080, https://openalex.org/W3036137852, https://openalex.org/W2175370850, https://openalex.org/W4311823874, https://openalex.org/W2901677030, https://openalex.org/W2964643116, https://openalex.org/W4200084953, https://openalex.org/W3163661434, https://openalex.org/W3165827221, https://openalex.org/W4283827083, https://openalex.org/W2917858269, https://openalex.org/W1965092590, https://openalex.org/W2971398276, https://openalex.org/W165998507, https://openalex.org/W2771542157, https://openalex.org/W2114104545, https://openalex.org/W3150010507, https://openalex.org/W2802291136, https://openalex.org/W2968069281, https://openalex.org/W3198628780, https://openalex.org/W4367187108, https://openalex.org/W3176693948, https://openalex.org/W4319017590, https://openalex.org/W2950976066, https://openalex.org/W3002417351, https://openalex.org/W3101697142, https://openalex.org/W2060300932, https://openalex.org/W4214809056, https://openalex.org/W2393319904, https://openalex.org/W3134710066, https://openalex.org/W4293537710, https://openalex.org/W4319158806, https://openalex.org/W4210840193, https://openalex.org/W4205126801, https://openalex.org/W4323066405, https://openalex.org/W2973034691, https://openalex.org/W4206296072, https://openalex.org/W3127245931, https://openalex.org/W4206804332, https://openalex.org/W2951506174, https://openalex.org/W2016208474, https://openalex.org/W4207068394 |
| referenced_works_count | 66 |
| abstract_inverted_index.+ | 138 |
| abstract_inverted_index.T | 139, 143 |
| abstract_inverted_index.a | 8, 148 |
| abstract_inverted_index.22 | 110 |
| abstract_inverted_index.56 | 152 |
| abstract_inverted_index.an | 70 |
| abstract_inverted_index.by | 55, 146 |
| abstract_inverted_index.in | 80 |
| abstract_inverted_index.is | 7, 27 |
| abstract_inverted_index.of | 24 |
| abstract_inverted_index.to | 75 |
| abstract_inverted_index.we | 67 |
| abstract_inverted_index.CD4 | 137 |
| abstract_inverted_index.IL1 | 163 |
| abstract_inverted_index.and | 17, 45, 116, 141, 164 |
| abstract_inverted_index.are | 36 |
| abstract_inverted_index.for | 3, 11, 86, 155, 169 |
| abstract_inverted_index.the | 22, 49, 56, 60 |
| abstract_inverted_index.Cell | 0 |
| abstract_inverted_index.This | 90 |
| abstract_inverted_index.cell | 13, 83, 119, 149, 153 |
| abstract_inverted_index.data | 6, 31, 35, 97 |
| abstract_inverted_index.even | 46 |
| abstract_inverted_index.from | 39, 95, 136 |
| abstract_inverted_index.gene | 50, 62, 77 |
| abstract_inverted_index.like | 162 |
| abstract_inverted_index.such | 34 |
| abstract_inverted_index.that | 113 |
| abstract_inverted_index.tool | 73 |
| abstract_inverted_index.upon | 29 |
| abstract_inverted_index.atlas | 150 |
| abstract_inverted_index.blood | 132 |
| abstract_inverted_index.cells | 140 |
| abstract_inverted_index.data. | 89 |
| abstract_inverted_index.helps | 92 |
| abstract_inverted_index.ions, | 166 |
| abstract_inverted_index.noise | 94 |
| abstract_inverted_index.novel | 128 |
| abstract_inverted_index.often | 37 |
| abstract_inverted_index.scHGR | 114, 126, 158 |
| abstract_inverted_index.sets. | 32 |
| abstract_inverted_index.types | 154 |
| abstract_inverted_index.vital | 160 |
| abstract_inverted_index.while | 99 |
| abstract_inverted_index.cells, | 134 |
| abstract_inverted_index.cells. | 144 |
| abstract_inverted_index.graphs | 85 |
| abstract_inverted_index.reduce | 93 |
| abstract_inverted_index.scHGR, | 69 |
| abstract_inverted_index.within | 64, 130 |
| abstract_inverted_index.against | 122 |
| abstract_inverted_index.calcium | 165 |
| abstract_inverted_index.crucial | 9 |
| abstract_inverted_index.distant | 101 |
| abstract_inverted_index.diverse | 96 |
| abstract_inverted_index.factors | 161 |
| abstract_inverted_index.process | 10 |
| abstract_inverted_index.propose | 68 |
| abstract_inverted_index.remains | 53 |
| abstract_inverted_index.sourced | 38 |
| abstract_inverted_index.sources | 98 |
| abstract_inverted_index.various | 40 |
| abstract_inverted_index.COVID-19 | 156 |
| abstract_inverted_index.Notably, | 48 |
| abstract_inverted_index.atlases, | 14 |
| abstract_inverted_index.batches, | 41 |
| abstract_inverted_index.cellular | 102 |
| abstract_inverted_index.designed | 74 |
| abstract_inverted_index.efficacy | 23 |
| abstract_inverted_index.existing | 25 |
| abstract_inverted_index.factors, | 58 |
| abstract_inverted_index.identity | 1 |
| abstract_inverted_index.insights | 168 |
| abstract_inverted_index.leverage | 76 |
| abstract_inverted_index.methods. | 124 |
| abstract_inverted_index.offering | 167 |
| abstract_inverted_index.species. | 47 |
| abstract_inverted_index.specific | 30 |
| abstract_inverted_index.strategy | 91 |
| abstract_inverted_index.subtypes | 129 |
| abstract_inverted_index.targeted | 170 |
| abstract_inverted_index.tissues, | 44 |
| abstract_inverted_index.uncovers | 127 |
| abstract_inverted_index.valuable | 105 |
| abstract_inverted_index.yielding | 104 |
| abstract_inverted_index.annotates | 118 |
| abstract_inverted_index.automated | 71 |
| abstract_inverted_index.cytotoxic | 142 |
| abstract_inverted_index.extensive | 61 |
| abstract_inverted_index.insights. | 107 |
| abstract_inverted_index.inspiring | 18 |
| abstract_inverted_index.involving | 109 |
| abstract_inverted_index.patients, | 157 |
| abstract_inverted_index.precisely | 115 |
| abstract_inverted_index.scenarios | 111 |
| abstract_inverted_index.Crucially, | 125 |
| abstract_inverted_index.Currently, | 21 |
| abstract_inverted_index.Therefore, | 66 |
| abstract_inverted_index.annotation | 2, 72 |
| abstract_inverted_index.biological | 106 |
| abstract_inverted_index.comprising | 151 |
| abstract_inverted_index.contingent | 28 |
| abstract_inverted_index.identifies | 159 |
| abstract_inverted_index.organisms. | 65 |
| abstract_inverted_index.peripheral | 131 |
| abstract_inverted_index.regulatory | 51, 78 |
| abstract_inverted_index.sequencing | 42 |
| abstract_inverted_index.unaffected | 54 |
| abstract_inverted_index.unraveling | 15 |
| abstract_inverted_index.Experiments | 108 |
| abstract_inverted_index.approaches. | 20 |
| abstract_inverted_index.benchmarked | 121 |
| abstract_inverted_index.demonstrate | 112 |
| abstract_inverted_index.identities, | 120 |
| abstract_inverted_index.mononuclear | 133 |
| abstract_inverted_index.single-cell | 4, 87 |
| abstract_inverted_index.therapeutic | 19, 171 |
| abstract_inverted_index.Furthermore, | 145 |
| abstract_inverted_index.connections, | 103 |
| abstract_inverted_index.consistently | 117 |
| abstract_inverted_index.constructing | 12, 81 |
| abstract_inverted_index.establishing | 100 |
| abstract_inverted_index.highlighting | 59 |
| abstract_inverted_index.interactions | 63 |
| abstract_inverted_index.relationship | 52 |
| abstract_inverted_index.specifically | 135 |
| abstract_inverted_index.Nevertheless, | 33 |
| abstract_inverted_index.communication | 84 |
| abstract_inverted_index.gene-mediated | 82 |
| abstract_inverted_index.methodologies | 26 |
| abstract_inverted_index.pathogenesis, | 16 |
| abstract_inverted_index.relationships | 79 |
| abstract_inverted_index.technologies, | 43 |
| abstract_inverted_index.transcriptome | 5, 88 |
| abstract_inverted_index.aforementioned | 57 |
| abstract_inverted_index.characterizing | 147 |
| abstract_inverted_index.interventions. | 172 |
| abstract_inverted_index.state-of-the-art | 123 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.91274399 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |