A general approach for improving deep learning-based medical relation extraction using a pre-trained model and fine-tuning Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1093/database/baz116
The automatic extraction of meaningful relations from biomedical literature or clinical records is crucial in various biomedical applications. Most of the current deep learning approaches for medical relation extraction require large-scale training data to prevent overfitting of the training model. We propose using a pre-trained model and a fine-tuning technique to improve these approaches without additional time-consuming human labeling. Firstly, we show the architecture of Bidirectional Encoder Representations from Transformers (BERT), an approach for pre-training a model on large-scale unstructured text. We then combine BERT with a one-dimensional convolutional neural network (1d-CNN) to fine-tune the pre-trained model for relation extraction. Extensive experiments on three datasets, namely the BioCreative V chemical disease relation corpus, traditional Chinese medicine literature corpus and i2b2 2012 temporal relation challenge corpus, show that the proposed approach achieves state-of-the-art results (giving a relative improvement of 22.2, 7.77, and 38.5% in F1 score, respectively, compared with a traditional 1d-CNN classifier). The source code is available at https://github.com/chentao1999/MedicalRelationExtraction.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/database/baz116
- https://academic.oup.com/database/article-pdf/doi/10.1093/database/baz116/31197246/baz116.pdf
- OA Status
- gold
- Cited By
- 46
- References
- 34
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2997204042
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2997204042Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/database/baz116Digital Object Identifier
- Title
-
A general approach for improving deep learning-based medical relation extraction using a pre-trained model and fine-tuningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-01-01Full publication date if available
- Authors
-
Tao Chen, Mingfen Wu, Hexi LiList of authors in order
- Landing page
-
https://doi.org/10.1093/database/baz116Publisher landing page
- PDF URL
-
https://academic.oup.com/database/article-pdf/doi/10.1093/database/baz116/31197246/baz116.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://academic.oup.com/database/article-pdf/doi/10.1093/database/baz116/31197246/baz116.pdfDirect OA link when available
- Concepts
-
Computer science, Relation (database), Relationship extraction, Artificial intelligence, Deep learning, Extraction (chemistry), Machine learning, Natural language processing, Information retrieval, Data mining, Chromatography, ChemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
46Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 13, 2023: 11, 2022: 8, 2021: 9Per-year citation counts (last 5 years)
- References (count)
-
34Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2997204042 |
|---|---|
| doi | https://doi.org/10.1093/database/baz116 |
| ids.doi | https://doi.org/10.1093/database/baz116 |
| ids.mag | 2997204042 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/31800044 |
| ids.openalex | https://openalex.org/W2997204042 |
| fwci | 2.91873717 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000465 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Algorithms |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D057225 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Data Mining |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D000077321 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Deep Learning |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D008516 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Medicine, Chinese Traditional |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D008962 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Models, Theoretical |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D012984 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Software |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D000465 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Algorithms |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D057225 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Data Mining |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D000077321 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Deep Learning |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D008516 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Medicine, Chinese Traditional |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D008962 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Models, Theoretical |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D012984 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Software |
| type | article |
| title | A general approach for improving deep learning-based medical relation extraction using a pre-trained model and fine-tuning |
| awards[0].id | https://openalex.org/G4817477131 |
| awards[0].funder_id | https://openalex.org/F4320321921 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2016A070708002 |
| awards[0].funder_display_name | Natural Science Foundation of Guangdong Province |
| awards[1].id | https://openalex.org/G1161383000 |
| awards[1].funder_id | https://openalex.org/F4320326279 |
| awards[1].display_name | |
| awards[1].funder_award_id | 2014KZDXM055 |
| awards[1].funder_display_name | Department of Education of Guangdong Province |
| awards[2].id | https://openalex.org/G906910035 |
| awards[2].funder_id | https://openalex.org/F4320321921 |
| awards[2].display_name | |
| awards[2].funder_award_id | 2016A030313003 |
| awards[2].funder_display_name | Natural Science Foundation of Guangdong Province |
| biblio.issue | |
| biblio.volume | 2019 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T13702 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9922999739646912 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning in Healthcare |
| topics[2].id | https://openalex.org/T10181 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9890999794006348 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Natural Language Processing Techniques |
| funders[0].id | https://openalex.org/F4320321921 |
| funders[0].ror | |
| funders[0].display_name | Natural Science Foundation of Guangdong Province |
| funders[1].id | https://openalex.org/F4320326279 |
| funders[1].ror | |
| funders[1].display_name | Department of Education of Guangdong Province |
| is_xpac | False |
| apc_list.value | 1415 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1735 |
| apc_paid.value | 1415 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1735 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7647355198860168 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C25343380 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7634100317955017 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q277521 |
| concepts[1].display_name | Relation (database) |
| concepts[2].id | https://openalex.org/C153604712 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6605297923088074 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7310755 |
| concepts[2].display_name | Relationship extraction |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6324858665466309 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C108583219 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5281170606613159 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[4].display_name | Deep learning |
| concepts[5].id | https://openalex.org/C4725764 |
| concepts[5].level | 2 |
| concepts[5].score | 0.49457475543022156 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844704 |
| concepts[5].display_name | Extraction (chemistry) |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.46510323882102966 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C204321447 |
| concepts[7].level | 1 |
| concepts[7].score | 0.45980751514434814 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[7].display_name | Natural language processing |
| concepts[8].id | https://openalex.org/C23123220 |
| concepts[8].level | 1 |
| concepts[8].score | 0.39740458130836487 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[8].display_name | Information retrieval |
| concepts[9].id | https://openalex.org/C124101348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3855840861797333 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[9].display_name | Data mining |
| concepts[10].id | https://openalex.org/C43617362 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q170050 |
| concepts[10].display_name | Chromatography |
| concepts[11].id | https://openalex.org/C185592680 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[11].display_name | Chemistry |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7647355198860168 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/relation |
| keywords[1].score | 0.7634100317955017 |
| keywords[1].display_name | Relation (database) |
| keywords[2].id | https://openalex.org/keywords/relationship-extraction |
| keywords[2].score | 0.6605297923088074 |
| keywords[2].display_name | Relationship extraction |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6324858665466309 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/deep-learning |
| keywords[4].score | 0.5281170606613159 |
| keywords[4].display_name | Deep learning |
| keywords[5].id | https://openalex.org/keywords/extraction |
| keywords[5].score | 0.49457475543022156 |
| keywords[5].display_name | Extraction (chemistry) |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.46510323882102966 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/natural-language-processing |
| keywords[7].score | 0.45980751514434814 |
| keywords[7].display_name | Natural language processing |
| keywords[8].id | https://openalex.org/keywords/information-retrieval |
| keywords[8].score | 0.39740458130836487 |
| keywords[8].display_name | Information retrieval |
| keywords[9].id | https://openalex.org/keywords/data-mining |
| keywords[9].score | 0.3855840861797333 |
| keywords[9].display_name | Data mining |
| language | en |
| locations[0].id | doi:10.1093/database/baz116 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210201630 |
| locations[0].source.issn | 1758-0463 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1758-0463 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Database |
| locations[0].source.host_organization | https://openalex.org/P4310311647 |
| locations[0].source.host_organization_name | University of Oxford |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | University of Oxford |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://academic.oup.com/database/article-pdf/doi/10.1093/database/baz116/31197246/baz116.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Database |
| locations[0].landing_page_url | https://doi.org/10.1093/database/baz116 |
| locations[1].id | pmid:31800044 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Database : the journal of biological databases and curation |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/31800044 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:6892305 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Database (Oxford) |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/6892305 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5100357784 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0190-3853 |
| authorships[0].author.display_name | Tao Chen |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210151615 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Faculty of Intelligent Manufacturing, Wuyi University, No.22, Dongcheng village, Pengjiang district, Jiangmen City, Guangdong Province, 529020, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210151615 |
| authorships[0].institutions[0].ror | https://ror.org/0488wz367 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210151615 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Wuyi University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tao Chen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science and Engineering, Faculty of Intelligent Manufacturing, Wuyi University, No.22, Dongcheng village, Pengjiang district, Jiangmen City, Guangdong Province, 529020, China |
| authorships[1].author.id | https://openalex.org/A5047354828 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2761-2299 |
| authorships[1].author.display_name | Mingfen Wu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210151615 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Faculty of Intelligent Manufacturing, Wuyi University, No.22, Dongcheng village, Pengjiang district, Jiangmen City, Guangdong Province, 529020, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210151615 |
| authorships[1].institutions[0].ror | https://ror.org/0488wz367 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210151615 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Wuyi University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mingfen Wu |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Computer Science and Engineering, Faculty of Intelligent Manufacturing, Wuyi University, No.22, Dongcheng village, Pengjiang district, Jiangmen City, Guangdong Province, 529020, China |
| authorships[2].author.id | https://openalex.org/A5015010820 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0728-0116 |
| authorships[2].author.display_name | Hexi Li |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210151615 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Faculty of Intelligent Manufacturing, Wuyi University, No.22, Dongcheng village, Pengjiang district, Jiangmen City, Guangdong Province, 529020, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210151615 |
| authorships[2].institutions[0].ror | https://ror.org/0488wz367 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210151615 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Wuyi University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Hexi Li |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science and Engineering, Faculty of Intelligent Manufacturing, Wuyi University, No.22, Dongcheng village, Pengjiang district, Jiangmen City, Guangdong Province, 529020, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://academic.oup.com/database/article-pdf/doi/10.1093/database/baz116/31197246/baz116.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A general approach for improving deep learning-based medical relation extraction using a pre-trained model and fine-tuning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W2976808399, https://openalex.org/W2609844752, https://openalex.org/W4392969631, https://openalex.org/W4285246823, https://openalex.org/W4226278302, https://openalex.org/W4221160509, https://openalex.org/W2547211086, https://openalex.org/W2538200646, https://openalex.org/W1968988659, https://openalex.org/W2888033806 |
| cited_by_count | 46 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 13 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 11 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 8 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 9 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1093/database/baz116 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210201630 |
| best_oa_location.source.issn | 1758-0463 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1758-0463 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Database |
| best_oa_location.source.host_organization | https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_name | University of Oxford |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_lineage_names | University of Oxford |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://academic.oup.com/database/article-pdf/doi/10.1093/database/baz116/31197246/baz116.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Database |
| best_oa_location.landing_page_url | https://doi.org/10.1093/database/baz116 |
| primary_location.id | doi:10.1093/database/baz116 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210201630 |
| primary_location.source.issn | 1758-0463 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1758-0463 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Database |
| primary_location.source.host_organization | https://openalex.org/P4310311647 |
| primary_location.source.host_organization_name | University of Oxford |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | University of Oxford |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://academic.oup.com/database/article-pdf/doi/10.1093/database/baz116/31197246/baz116.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Database |
| primary_location.landing_page_url | https://doi.org/10.1093/database/baz116 |
| publication_date | 2019-01-01 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W6743943788, https://openalex.org/W1941318214, https://openalex.org/W2328458480, https://openalex.org/W2398682428, https://openalex.org/W2894775784, https://openalex.org/W2900069888, https://openalex.org/W2801290881, https://openalex.org/W2604372572, https://openalex.org/W2802736684, https://openalex.org/W2062118960, https://openalex.org/W2963446712, https://openalex.org/W2142016317, https://openalex.org/W6684700384, https://openalex.org/W6626395738, https://openalex.org/W2005430761, https://openalex.org/W6680388317, https://openalex.org/W2560647685, https://openalex.org/W6683738474, https://openalex.org/W1566289585, https://openalex.org/W2339107443, https://openalex.org/W2741609678, https://openalex.org/W1005454186, https://openalex.org/W2158899491, https://openalex.org/W2952230511, https://openalex.org/W2753068549, https://openalex.org/W2626138915, https://openalex.org/W2137407193, https://openalex.org/W2051840895, https://openalex.org/W2557283755, https://openalex.org/W769759530, https://openalex.org/W2463773143, https://openalex.org/W2169491861, https://openalex.org/W2788071859, https://openalex.org/W2316275272 |
| referenced_works_count | 34 |
| abstract_inverted_index.V | 109 |
| abstract_inverted_index.a | 44, 48, 76, 87, 135, 149 |
| abstract_inverted_index.F1 | 144 |
| abstract_inverted_index.We | 41, 82 |
| abstract_inverted_index.an | 72 |
| abstract_inverted_index.at | 158 |
| abstract_inverted_index.in | 15, 143 |
| abstract_inverted_index.is | 13, 156 |
| abstract_inverted_index.of | 4, 20, 37, 65, 138 |
| abstract_inverted_index.on | 78, 103 |
| abstract_inverted_index.or | 10 |
| abstract_inverted_index.to | 34, 51, 93 |
| abstract_inverted_index.we | 61 |
| abstract_inverted_index.The | 1, 153 |
| abstract_inverted_index.and | 47, 119, 141 |
| abstract_inverted_index.for | 26, 74, 98 |
| abstract_inverted_index.the | 21, 38, 63, 95, 107, 128 |
| abstract_inverted_index.2012 | 121 |
| abstract_inverted_index.BERT | 85 |
| abstract_inverted_index.Most | 19 |
| abstract_inverted_index.code | 155 |
| abstract_inverted_index.data | 33 |
| abstract_inverted_index.deep | 23 |
| abstract_inverted_index.from | 7, 69 |
| abstract_inverted_index.i2b2 | 120 |
| abstract_inverted_index.show | 62, 126 |
| abstract_inverted_index.that | 127 |
| abstract_inverted_index.then | 83 |
| abstract_inverted_index.with | 86, 148 |
| abstract_inverted_index.22.2, | 139 |
| abstract_inverted_index.38.5% | 142 |
| abstract_inverted_index.7.77, | 140 |
| abstract_inverted_index.human | 58 |
| abstract_inverted_index.model | 46, 77, 97 |
| abstract_inverted_index.text. | 81 |
| abstract_inverted_index.these | 53 |
| abstract_inverted_index.three | 104 |
| abstract_inverted_index.using | 43 |
| abstract_inverted_index.1d-CNN | 151 |
| abstract_inverted_index.corpus | 118 |
| abstract_inverted_index.model. | 40 |
| abstract_inverted_index.namely | 106 |
| abstract_inverted_index.neural | 90 |
| abstract_inverted_index.score, | 145 |
| abstract_inverted_index.source | 154 |
| abstract_inverted_index.(BERT), | 71 |
| abstract_inverted_index.(giving | 134 |
| abstract_inverted_index.Chinese | 115 |
| abstract_inverted_index.Encoder | 67 |
| abstract_inverted_index.combine | 84 |
| abstract_inverted_index.corpus, | 113, 125 |
| abstract_inverted_index.crucial | 14 |
| abstract_inverted_index.current | 22 |
| abstract_inverted_index.disease | 111 |
| abstract_inverted_index.improve | 52 |
| abstract_inverted_index.medical | 27 |
| abstract_inverted_index.network | 91 |
| abstract_inverted_index.prevent | 35 |
| abstract_inverted_index.propose | 42 |
| abstract_inverted_index.records | 12 |
| abstract_inverted_index.require | 30 |
| abstract_inverted_index.results | 133 |
| abstract_inverted_index.various | 16 |
| abstract_inverted_index.without | 55 |
| abstract_inverted_index.(1d-CNN) | 92 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Firstly, | 60 |
| abstract_inverted_index.achieves | 131 |
| abstract_inverted_index.approach | 73, 130 |
| abstract_inverted_index.chemical | 110 |
| abstract_inverted_index.clinical | 11 |
| abstract_inverted_index.compared | 147 |
| abstract_inverted_index.learning | 24 |
| abstract_inverted_index.medicine | 116 |
| abstract_inverted_index.proposed | 129 |
| abstract_inverted_index.relation | 28, 99, 112, 123 |
| abstract_inverted_index.relative | 136 |
| abstract_inverted_index.temporal | 122 |
| abstract_inverted_index.training | 32, 39 |
| abstract_inverted_index.Extensive | 101 |
| abstract_inverted_index.automatic | 2 |
| abstract_inverted_index.available | 157 |
| abstract_inverted_index.challenge | 124 |
| abstract_inverted_index.datasets, | 105 |
| abstract_inverted_index.fine-tune | 94 |
| abstract_inverted_index.labeling. | 59 |
| abstract_inverted_index.relations | 6 |
| abstract_inverted_index.technique | 50 |
| abstract_inverted_index.additional | 56 |
| abstract_inverted_index.approaches | 25, 54 |
| abstract_inverted_index.biomedical | 8, 17 |
| abstract_inverted_index.extraction | 3, 29 |
| abstract_inverted_index.literature | 9, 117 |
| abstract_inverted_index.meaningful | 5 |
| abstract_inverted_index.BioCreative | 108 |
| abstract_inverted_index.experiments | 102 |
| abstract_inverted_index.extraction. | 100 |
| abstract_inverted_index.fine-tuning | 49 |
| abstract_inverted_index.improvement | 137 |
| abstract_inverted_index.large-scale | 31, 79 |
| abstract_inverted_index.overfitting | 36 |
| abstract_inverted_index.pre-trained | 45, 96 |
| abstract_inverted_index.traditional | 114, 150 |
| abstract_inverted_index.Transformers | 70 |
| abstract_inverted_index.architecture | 64 |
| abstract_inverted_index.classifier). | 152 |
| abstract_inverted_index.pre-training | 75 |
| abstract_inverted_index.unstructured | 80 |
| abstract_inverted_index.Bidirectional | 66 |
| abstract_inverted_index.applications. | 18 |
| abstract_inverted_index.convolutional | 89 |
| abstract_inverted_index.respectively, | 146 |
| abstract_inverted_index.time-consuming | 57 |
| abstract_inverted_index.Representations | 68 |
| abstract_inverted_index.one-dimensional | 88 |
| abstract_inverted_index.state-of-the-art | 132 |
| abstract_inverted_index.https://github.com/chentao1999/MedicalRelationExtraction. | 159 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5047354828 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I4210151615 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.8100000023841858 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.92654588 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |