A general approach to progressive intelligence Article Swipe
YOU?
·
· 2020
· Open Access
·
In biological learning, data are used to improve performance not only on the current task, but also on previously encountered and as yet unencountered tasks. In contrast, classical machine learning starts from a blank slate, or tabula rasa, using data only for the single task at hand. While typical transfer learning algorithms can improve performance on future tasks, their performance on prior tasks degrades upon learning new tasks (called catastrophic forgetting). Many recent approaches for continual or lifelong learning have attempted to maintain performance given new tasks. But striving to avoid forgetting sets the goal unnecessarily low: the goal of lifelong learning, whether biological or artificial, should be to improve performance on all tasks (including past and future) with any new data. We propose omnidirectional transfer learning algorithms, which includes two special cases of interest: decision forests and deep networks. Our key insight is the development of the omni-voter layer, which ensembles representations learned independently on all tasks to jointly decide how to proceed on any given new data point, thereby improving performance on both past and future tasks. Our algorithms demonstrate omnidirectional transfer in a variety of simulated and real data scenarios, including tabular data, image data, spoken data, and adversarial tasks. Moreover, they do so with quasilinear space and time complexity.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://arxiv.org/abs/2004.12908v1
- OA Status
- green
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3023117757
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3023117757Canonical identifier for this work in OpenAlex
- Title
-
A general approach to progressive intelligenceWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-04-27Full publication date if available
- Authors
-
Joshua T Vogelstein, Hayden S. Helm, Ronak Mehta, Jayanta Dey, Weiwei Yang, Bryan Tower, Will LeVine, Jonathan Larson, Christopher M. White, Carey E. PriebeList of authors in order
- Landing page
-
https://arxiv.org/abs/2004.12908v1Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/abs/2004.12908v1Direct OA link when available
- Concepts
-
Forgetting, Computer science, Artificial intelligence, Task (project management), Machine learning, Transfer of learning, Variety (cybernetics), Lifelong learning, Multi-task learning, Management, Psychology, Philosophy, Linguistics, Pedagogy, EconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3023117757 |
|---|---|
| doi | |
| ids.mag | 3023117757 |
| ids.openalex | https://openalex.org/W3023117757 |
| fwci | 0.0 |
| type | article |
| title | A general approach to progressive intelligence |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11307 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9585999846458435 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Domain Adaptation and Few-Shot Learning |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9387000203132629 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| topics[2].id | https://openalex.org/T11775 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9038000106811523 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | COVID-19 diagnosis using AI |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C7149132 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8586441278457642 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1377840 |
| concepts[0].display_name | Forgetting |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7934319972991943 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6388009786605835 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2780451532 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6156455874443054 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[3].display_name | Task (project management) |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5424670577049255 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C150899416 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5183866620063782 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[5].display_name | Transfer of learning |
| concepts[6].id | https://openalex.org/C136197465 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5032679438591003 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1729295 |
| concepts[6].display_name | Variety (cybernetics) |
| concepts[7].id | https://openalex.org/C108771440 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4933096468448639 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q368475 |
| concepts[7].display_name | Lifelong learning |
| concepts[8].id | https://openalex.org/C28006648 |
| concepts[8].level | 3 |
| concepts[8].score | 0.43930497765541077 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q6934509 |
| concepts[8].display_name | Multi-task learning |
| concepts[9].id | https://openalex.org/C187736073 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[9].display_name | Management |
| concepts[10].id | https://openalex.org/C15744967 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[10].display_name | Psychology |
| concepts[11].id | https://openalex.org/C138885662 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[11].display_name | Philosophy |
| concepts[12].id | https://openalex.org/C41895202 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[12].display_name | Linguistics |
| concepts[13].id | https://openalex.org/C19417346 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7922 |
| concepts[13].display_name | Pedagogy |
| concepts[14].id | https://openalex.org/C162324750 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[14].display_name | Economics |
| keywords[0].id | https://openalex.org/keywords/forgetting |
| keywords[0].score | 0.8586441278457642 |
| keywords[0].display_name | Forgetting |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7934319972991943 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6388009786605835 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/task |
| keywords[3].score | 0.6156455874443054 |
| keywords[3].display_name | Task (project management) |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.5424670577049255 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[5].score | 0.5183866620063782 |
| keywords[5].display_name | Transfer of learning |
| keywords[6].id | https://openalex.org/keywords/variety |
| keywords[6].score | 0.5032679438591003 |
| keywords[6].display_name | Variety (cybernetics) |
| keywords[7].id | https://openalex.org/keywords/lifelong-learning |
| keywords[7].score | 0.4933096468448639 |
| keywords[7].display_name | Lifelong learning |
| keywords[8].id | https://openalex.org/keywords/multi-task-learning |
| keywords[8].score | 0.43930497765541077 |
| keywords[8].display_name | Multi-task learning |
| language | en |
| locations[0].id | mag:3023117757 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | arXiv (Cornell University) |
| locations[0].landing_page_url | https://arxiv.org/abs/2004.12908v1 |
| authorships[0].author.id | https://openalex.org/A5065441417 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2487-6237 |
| authorships[0].author.display_name | Joshua T Vogelstein |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Joshua T. Vogelstein |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5091316872 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9475-8100 |
| authorships[1].author.display_name | Hayden S. Helm |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hayden S. Helm |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5001083519 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Ronak Mehta |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ronak D. Mehta |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101499187 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6713-7402 |
| authorships[3].author.display_name | Jayanta Dey |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jayanta Dey |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5102743275 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0377-2626 |
| authorships[4].author.display_name | Weiwei Yang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Weiwei Yang |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5102836934 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3659-6988 |
| authorships[5].author.display_name | Bryan Tower |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Bryan Tower |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5074030713 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Will LeVine |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Will LeVine |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5056572216 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-8865-9306 |
| authorships[7].author.display_name | Jonathan Larson |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Jonathan Larson |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5103871563 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Christopher M. White |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Christopher M. White |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5031834098 |
| authorships[9].author.orcid | |
| authorships[9].author.display_name | Carey E. Priebe |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Carey E. Priebe |
| authorships[9].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/abs/2004.12908v1 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A general approach to progressive intelligence |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-10-10T17:16:08.811792 |
| primary_topic.id | https://openalex.org/T11307 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9585999846458435 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Domain Adaptation and Few-Shot Learning |
| related_works | https://openalex.org/W3133657903, https://openalex.org/W3103724573, https://openalex.org/W3033074320, https://openalex.org/W2951032747, https://openalex.org/W3111396778, https://openalex.org/W3021105371, https://openalex.org/W3103800629, https://openalex.org/W3179436402, https://openalex.org/W3133815862, https://openalex.org/W3041477290, https://openalex.org/W3021492942, https://openalex.org/W3034672970, https://openalex.org/W3206106208, https://openalex.org/W3166185557, https://openalex.org/W2922231043, https://openalex.org/W2982701845, https://openalex.org/W2979626747, https://openalex.org/W2970502342, https://openalex.org/W2977408082, https://openalex.org/W3131034247 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | mag:3023117757 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | arXiv (Cornell University) |
| best_oa_location.landing_page_url | https://arxiv.org/abs/2004.12908v1 |
| primary_location.id | mag:3023117757 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | arXiv (Cornell University) |
| primary_location.landing_page_url | https://arxiv.org/abs/2004.12908v1 |
| publication_date | 2020-04-27 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 32, 185 |
| abstract_inverted_index.In | 0, 25 |
| abstract_inverted_index.We | 122 |
| abstract_inverted_index.as | 21 |
| abstract_inverted_index.at | 45 |
| abstract_inverted_index.be | 107 |
| abstract_inverted_index.do | 205 |
| abstract_inverted_index.in | 184 |
| abstract_inverted_index.is | 143 |
| abstract_inverted_index.of | 99, 133, 146, 187 |
| abstract_inverted_index.on | 11, 17, 55, 60, 111, 155, 164, 173 |
| abstract_inverted_index.or | 35, 76, 104 |
| abstract_inverted_index.so | 206 |
| abstract_inverted_index.to | 6, 81, 89, 108, 158, 162 |
| abstract_inverted_index.But | 87 |
| abstract_inverted_index.Our | 140, 179 |
| abstract_inverted_index.all | 112, 156 |
| abstract_inverted_index.and | 20, 116, 137, 176, 189, 200, 210 |
| abstract_inverted_index.any | 119, 165 |
| abstract_inverted_index.are | 4 |
| abstract_inverted_index.but | 15 |
| abstract_inverted_index.can | 52 |
| abstract_inverted_index.for | 41, 74 |
| abstract_inverted_index.how | 161 |
| abstract_inverted_index.key | 141 |
| abstract_inverted_index.new | 66, 85, 120, 167 |
| abstract_inverted_index.not | 9 |
| abstract_inverted_index.the | 12, 42, 93, 97, 144, 147 |
| abstract_inverted_index.two | 130 |
| abstract_inverted_index.yet | 22 |
| abstract_inverted_index.Many | 71 |
| abstract_inverted_index.also | 16 |
| abstract_inverted_index.both | 174 |
| abstract_inverted_index.data | 3, 39, 168, 191 |
| abstract_inverted_index.deep | 138 |
| abstract_inverted_index.from | 31 |
| abstract_inverted_index.goal | 94, 98 |
| abstract_inverted_index.have | 79 |
| abstract_inverted_index.low: | 96 |
| abstract_inverted_index.only | 10, 40 |
| abstract_inverted_index.past | 115, 175 |
| abstract_inverted_index.real | 190 |
| abstract_inverted_index.sets | 92 |
| abstract_inverted_index.task | 44 |
| abstract_inverted_index.they | 204 |
| abstract_inverted_index.time | 211 |
| abstract_inverted_index.upon | 64 |
| abstract_inverted_index.used | 5 |
| abstract_inverted_index.with | 118, 207 |
| abstract_inverted_index.While | 47 |
| abstract_inverted_index.avoid | 90 |
| abstract_inverted_index.blank | 33 |
| abstract_inverted_index.cases | 132 |
| abstract_inverted_index.data, | 195, 197, 199 |
| abstract_inverted_index.data. | 121 |
| abstract_inverted_index.given | 84, 166 |
| abstract_inverted_index.hand. | 46 |
| abstract_inverted_index.image | 196 |
| abstract_inverted_index.prior | 61 |
| abstract_inverted_index.rasa, | 37 |
| abstract_inverted_index.space | 209 |
| abstract_inverted_index.task, | 14 |
| abstract_inverted_index.tasks | 62, 67, 113, 157 |
| abstract_inverted_index.their | 58 |
| abstract_inverted_index.using | 38 |
| abstract_inverted_index.which | 128, 150 |
| abstract_inverted_index.decide | 160 |
| abstract_inverted_index.future | 56, 177 |
| abstract_inverted_index.layer, | 149 |
| abstract_inverted_index.point, | 169 |
| abstract_inverted_index.recent | 72 |
| abstract_inverted_index.should | 106 |
| abstract_inverted_index.single | 43 |
| abstract_inverted_index.slate, | 34 |
| abstract_inverted_index.spoken | 198 |
| abstract_inverted_index.starts | 30 |
| abstract_inverted_index.tabula | 36 |
| abstract_inverted_index.tasks, | 57 |
| abstract_inverted_index.tasks. | 24, 86, 178, 202 |
| abstract_inverted_index.(called | 68 |
| abstract_inverted_index.current | 13 |
| abstract_inverted_index.forests | 136 |
| abstract_inverted_index.future) | 117 |
| abstract_inverted_index.improve | 7, 53, 109 |
| abstract_inverted_index.insight | 142 |
| abstract_inverted_index.jointly | 159 |
| abstract_inverted_index.learned | 153 |
| abstract_inverted_index.machine | 28 |
| abstract_inverted_index.proceed | 163 |
| abstract_inverted_index.propose | 123 |
| abstract_inverted_index.special | 131 |
| abstract_inverted_index.tabular | 194 |
| abstract_inverted_index.thereby | 170 |
| abstract_inverted_index.typical | 48 |
| abstract_inverted_index.variety | 186 |
| abstract_inverted_index.whether | 102 |
| abstract_inverted_index.decision | 135 |
| abstract_inverted_index.degrades | 63 |
| abstract_inverted_index.includes | 129 |
| abstract_inverted_index.learning | 29, 50, 65, 78, 126 |
| abstract_inverted_index.lifelong | 77, 100 |
| abstract_inverted_index.maintain | 82 |
| abstract_inverted_index.striving | 88 |
| abstract_inverted_index.transfer | 49, 125, 183 |
| abstract_inverted_index.Moreover, | 203 |
| abstract_inverted_index.attempted | 80 |
| abstract_inverted_index.classical | 27 |
| abstract_inverted_index.continual | 75 |
| abstract_inverted_index.contrast, | 26 |
| abstract_inverted_index.ensembles | 151 |
| abstract_inverted_index.improving | 171 |
| abstract_inverted_index.including | 193 |
| abstract_inverted_index.interest: | 134 |
| abstract_inverted_index.learning, | 2, 101 |
| abstract_inverted_index.networks. | 139 |
| abstract_inverted_index.simulated | 188 |
| abstract_inverted_index.(including | 114 |
| abstract_inverted_index.algorithms | 51, 180 |
| abstract_inverted_index.approaches | 73 |
| abstract_inverted_index.biological | 1, 103 |
| abstract_inverted_index.forgetting | 91 |
| abstract_inverted_index.omni-voter | 148 |
| abstract_inverted_index.previously | 18 |
| abstract_inverted_index.scenarios, | 192 |
| abstract_inverted_index.adversarial | 201 |
| abstract_inverted_index.algorithms, | 127 |
| abstract_inverted_index.artificial, | 105 |
| abstract_inverted_index.complexity. | 212 |
| abstract_inverted_index.demonstrate | 181 |
| abstract_inverted_index.development | 145 |
| abstract_inverted_index.encountered | 19 |
| abstract_inverted_index.performance | 8, 54, 59, 83, 110, 172 |
| abstract_inverted_index.quasilinear | 208 |
| abstract_inverted_index.catastrophic | 69 |
| abstract_inverted_index.forgetting). | 70 |
| abstract_inverted_index.independently | 154 |
| abstract_inverted_index.unencountered | 23 |
| abstract_inverted_index.unnecessarily | 95 |
| abstract_inverted_index.omnidirectional | 124, 182 |
| abstract_inverted_index.representations | 152 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 10 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.5199999809265137 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.044146 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |