A general framework for evaluating real-time bioaerosol classification algorithms Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.5194/egusphere-2025-5440
Advances in automatic bioaerosol monitoring require updated approaches to evaluate particle classification algorithms. We present a training and evaluation framework based on three metrics: (1) Kendall’s Tau correlation between predicted and manual concentrations, (2) scaling factor, to assess identification efficiency, and (3) off-season noise ratio, quantifying off-season false predictions. Metrics are computed per class across confidence thresholds and five stations stations, and visualised in graphs revealing overfitting, station-specific biases, and sensitivity–specificity trade-offs. We provide optimal ranges for each metric respectively calculated from correlations on co-located manual measurements, worst-case scenario off-season noise ratio, and physical sampling limits constraining acceptable scaling factor. The evaluation framework was applied to seven deep-learning classifiers trained on holography and fluorescence data from SwisensPoleno devices, and compared with the 2022 holography-only classifier. Classifier performances are compared through visualisation methods, helping identifying over-training, misclassification between morphologically similar taxa or between pollen and non-pollen particles. This methodology allows a transparent and reproducible comparison of classification algorithms, independent of classifier architecture and device. Its adoption could help standardise performance reporting across the research community, even more so when evaluation datasets are standardised across different regions.
Related Topics
- Type
- article
- Landing Page
- https://doi.org/10.5194/egusphere-2025-5440
- https://egusphere.copernicus.org/preprints/2025/egusphere-2025-5440/egusphere-2025-5440.pdf
- OA Status
- gold
- OpenAlex ID
- https://openalex.org/W7106006027
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7106006027Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5194/egusphere-2025-5440Digital Object Identifier
- Title
-
A general framework for evaluating real-time bioaerosol classification algorithmsWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-19Full publication date if available
- Authors
-
Marie-Pierre Meurville, Bernard Clot, Sophie Erb, Mária Lbadaoui-Darvas, Fiona Tummon, Gian-Duri Lieberherr, Benoît Crouzy, Marie-Pierre Meurville, Bernard Clot, Sophie Erb, Mária Lbadaoui-Darvas, Fiona Tummon, Gian-Duri Lieberherr, Benoît CrouzyList of authors in order
- Landing page
-
https://doi.org/10.5194/egusphere-2025-5440Publisher landing page
- PDF URL
-
https://egusphere.copernicus.org/preprints/2025/egusphere-2025-5440/egusphere-2025-5440.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://egusphere.copernicus.org/preprints/2025/egusphere-2025-5440/egusphere-2025-5440.pdfDirect OA link when available
- Concepts
-
Classifier (UML), Computer science, Artificial intelligence, Data mining, Machine learning, Pattern recognition (psychology), A priori and a posteriori, Statistical classification, Boosting (machine learning), Scaling, Visualization, Noise (video), Metric (unit), Random forest, Training set, Resampling, Multidimensional scaling, Contextual image classification, Background noise, Ensemble learning, Identification (biology), Robustness (evolution), Support vector machine, Algorithm, Sampling (signal processing), Confusion matrix, Data visualization, Scale (ratio)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7106006027 |
|---|---|
| doi | https://doi.org/10.5194/egusphere-2025-5440 |
| ids.doi | https://doi.org/10.5194/egusphere-2025-5440 |
| ids.openalex | https://openalex.org/W7106006027 |
| fwci | 0.0 |
| type | article |
| title | A general framework for evaluating real-time bioaerosol classification algorithms |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10877 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.4780803322792053 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2723 |
| topics[0].subfield.display_name | Immunology and Allergy |
| topics[0].display_name | Allergic Rhinitis and Sensitization |
| topics[1].id | https://openalex.org/T11002 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.3971306085586548 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2307 |
| topics[1].subfield.display_name | Health, Toxicology and Mutagenesis |
| topics[1].display_name | Indoor Air Quality and Microbial Exposure |
| topics[2].id | https://openalex.org/T12120 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.04059472307562828 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2305 |
| topics[2].subfield.display_name | Environmental Engineering |
| topics[2].display_name | Air Quality Monitoring and Forecasting |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C95623464 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6308075785636902 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[0].display_name | Classifier (UML) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6246967315673828 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5259155035018921 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C124101348 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5039953589439392 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[3].display_name | Data mining |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.46748459339141846 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4480457901954651 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C75553542 |
| concepts[6].level | 2 |
| concepts[6].score | 0.42512890696525574 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q178161 |
| concepts[6].display_name | A priori and a posteriori |
| concepts[7].id | https://openalex.org/C110083411 |
| concepts[7].level | 2 |
| concepts[7].score | 0.42083799839019775 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1744628 |
| concepts[7].display_name | Statistical classification |
| concepts[8].id | https://openalex.org/C46686674 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4183652102947235 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q466303 |
| concepts[8].display_name | Boosting (machine learning) |
| concepts[9].id | https://openalex.org/C99844830 |
| concepts[9].level | 2 |
| concepts[9].score | 0.41295450925827026 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q102441924 |
| concepts[9].display_name | Scaling |
| concepts[10].id | https://openalex.org/C36464697 |
| concepts[10].level | 2 |
| concepts[10].score | 0.38187894225120544 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q451553 |
| concepts[10].display_name | Visualization |
| concepts[11].id | https://openalex.org/C99498987 |
| concepts[11].level | 3 |
| concepts[11].score | 0.36358070373535156 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[11].display_name | Noise (video) |
| concepts[12].id | https://openalex.org/C176217482 |
| concepts[12].level | 2 |
| concepts[12].score | 0.3607461452484131 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q860554 |
| concepts[12].display_name | Metric (unit) |
| concepts[13].id | https://openalex.org/C169258074 |
| concepts[13].level | 2 |
| concepts[13].score | 0.3459060490131378 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[13].display_name | Random forest |
| concepts[14].id | https://openalex.org/C51632099 |
| concepts[14].level | 2 |
| concepts[14].score | 0.3354439437389374 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q3985153 |
| concepts[14].display_name | Training set |
| concepts[15].id | https://openalex.org/C150921843 |
| concepts[15].level | 2 |
| concepts[15].score | 0.3340320587158203 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1170431 |
| concepts[15].display_name | Resampling |
| concepts[16].id | https://openalex.org/C91682802 |
| concepts[16].level | 2 |
| concepts[16].score | 0.32322028279304504 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q620538 |
| concepts[16].display_name | Multidimensional scaling |
| concepts[17].id | https://openalex.org/C75294576 |
| concepts[17].level | 3 |
| concepts[17].score | 0.3216772675514221 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q5165192 |
| concepts[17].display_name | Contextual image classification |
| concepts[18].id | https://openalex.org/C100675267 |
| concepts[18].level | 2 |
| concepts[18].score | 0.307640939950943 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1371624 |
| concepts[18].display_name | Background noise |
| concepts[19].id | https://openalex.org/C45942800 |
| concepts[19].level | 2 |
| concepts[19].score | 0.2957592308521271 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q245652 |
| concepts[19].display_name | Ensemble learning |
| concepts[20].id | https://openalex.org/C116834253 |
| concepts[20].level | 2 |
| concepts[20].score | 0.29142478108406067 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[20].display_name | Identification (biology) |
| concepts[21].id | https://openalex.org/C63479239 |
| concepts[21].level | 3 |
| concepts[21].score | 0.2903078496456146 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[21].display_name | Robustness (evolution) |
| concepts[22].id | https://openalex.org/C12267149 |
| concepts[22].level | 2 |
| concepts[22].score | 0.27928897738456726 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[22].display_name | Support vector machine |
| concepts[23].id | https://openalex.org/C11413529 |
| concepts[23].level | 1 |
| concepts[23].score | 0.2756001353263855 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[23].display_name | Algorithm |
| concepts[24].id | https://openalex.org/C140779682 |
| concepts[24].level | 3 |
| concepts[24].score | 0.2753414511680603 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q210868 |
| concepts[24].display_name | Sampling (signal processing) |
| concepts[25].id | https://openalex.org/C138602881 |
| concepts[25].level | 2 |
| concepts[25].score | 0.2667778730392456 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q2709591 |
| concepts[25].display_name | Confusion matrix |
| concepts[26].id | https://openalex.org/C172367668 |
| concepts[26].level | 3 |
| concepts[26].score | 0.2568809390068054 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q6504956 |
| concepts[26].display_name | Data visualization |
| concepts[27].id | https://openalex.org/C2778755073 |
| concepts[27].level | 2 |
| concepts[27].score | 0.2548695504665375 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[27].display_name | Scale (ratio) |
| keywords[0].id | https://openalex.org/keywords/classifier |
| keywords[0].score | 0.6308075785636902 |
| keywords[0].display_name | Classifier (UML) |
| keywords[1].id | https://openalex.org/keywords/pattern-recognition |
| keywords[1].score | 0.4480457901954651 |
| keywords[1].display_name | Pattern recognition (psychology) |
| keywords[2].id | https://openalex.org/keywords/a-priori-and-a-posteriori |
| keywords[2].score | 0.42512890696525574 |
| keywords[2].display_name | A priori and a posteriori |
| keywords[3].id | https://openalex.org/keywords/statistical-classification |
| keywords[3].score | 0.42083799839019775 |
| keywords[3].display_name | Statistical classification |
| keywords[4].id | https://openalex.org/keywords/boosting |
| keywords[4].score | 0.4183652102947235 |
| keywords[4].display_name | Boosting (machine learning) |
| keywords[5].id | https://openalex.org/keywords/scaling |
| keywords[5].score | 0.41295450925827026 |
| keywords[5].display_name | Scaling |
| keywords[6].id | https://openalex.org/keywords/visualization |
| keywords[6].score | 0.38187894225120544 |
| keywords[6].display_name | Visualization |
| keywords[7].id | https://openalex.org/keywords/noise |
| keywords[7].score | 0.36358070373535156 |
| keywords[7].display_name | Noise (video) |
| keywords[8].id | https://openalex.org/keywords/metric |
| keywords[8].score | 0.3607461452484131 |
| keywords[8].display_name | Metric (unit) |
| language | |
| locations[0].id | doi:10.5194/egusphere-2025-5440 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://egusphere.copernicus.org/preprints/2025/egusphere-2025-5440/egusphere-2025-5440.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5194/egusphere-2025-5440 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A4226112207 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6767-063X |
| authorships[0].author.display_name | Marie-Pierre Meurville |
| authorships[0].affiliations[0].raw_affiliation_string | MeteoSwiss, Chemin de l’aérologie 1, 1530 Payerne, Switzerland |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Marie-Pierre Meurville |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | MeteoSwiss, Chemin de l’aérologie 1, 1530 Payerne, Switzerland |
| authorships[1].author.id | https://openalex.org/A1994840518 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3935-6509 |
| authorships[1].author.display_name | Bernard Clot |
| authorships[1].affiliations[0].raw_affiliation_string | MeteoSwiss, Chemin de l’aérologie 1, 1530 Payerne, Switzerland |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Bernard Clot |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | MeteoSwiss, Chemin de l’aérologie 1, 1530 Payerne, Switzerland |
| authorships[2].author.id | https://openalex.org/A4290034659 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0700-283X |
| authorships[2].author.display_name | Sophie Erb |
| authorships[2].affiliations[0].raw_affiliation_string | MeteoSwiss, Chemin de l’aérologie 1, 1530 Payerne, Switzerland |
| authorships[2].affiliations[1].raw_affiliation_string | École Polytechnique Fédérale de Lausanne (EPFL), Environmental Remote Sensing Laboratory (LTE), CH-1015 Lausanne, Switzerland |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sophie Erb |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | MeteoSwiss, Chemin de l’aérologie 1, 1530 Payerne, Switzerland, École Polytechnique Fédérale de Lausanne (EPFL), Environmental Remote Sensing Laboratory (LTE), CH-1015 Lausanne, Switzerland |
| authorships[3].author.id | https://openalex.org/A4222704626 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9455-6023 |
| authorships[3].author.display_name | Mária Lbadaoui-Darvas |
| authorships[3].affiliations[0].raw_affiliation_string | MeteoSwiss, Chemin de l’aérologie 1, 1530 Payerne, Switzerland |
| authorships[3].affiliations[1].raw_affiliation_string | École Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil & Environmental Engineering, CH-1015 Lausanne, Switzerland |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Maria Lbadaoui-Darvas |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | MeteoSwiss, Chemin de l’aérologie 1, 1530 Payerne, Switzerland, École Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil & Environmental Engineering, CH-1015 Lausanne, Switzerland |
| authorships[4].author.id | https://openalex.org/A1289253157 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6459-339X |
| authorships[4].author.display_name | Fiona Tummon |
| authorships[4].affiliations[0].raw_affiliation_string | MeteoSwiss, Chemin de l’aérologie 1, 1530 Payerne, Switzerland |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Fiona Tummon |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | MeteoSwiss, Chemin de l’aérologie 1, 1530 Payerne, Switzerland |
| authorships[5].author.id | https://openalex.org/A5082950483 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2066-6868 |
| authorships[5].author.display_name | Gian-Duri Lieberherr |
| authorships[5].affiliations[0].raw_affiliation_string | MeteoSwiss, Chemin de l’aérologie 1, 1530 Payerne, Switzerland |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Gian-Duri Lieberherr |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | MeteoSwiss, Chemin de l’aérologie 1, 1530 Payerne, Switzerland |
| authorships[6].author.id | https://openalex.org/A1501109987 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-9911-415X |
| authorships[6].author.display_name | Benoît Crouzy |
| authorships[6].affiliations[0].raw_affiliation_string | MeteoSwiss, Chemin de l’aérologie 1, 1530 Payerne, Switzerland |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Benoît Crouzy |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | MeteoSwiss, Chemin de l’aérologie 1, 1530 Payerne, Switzerland |
| authorships[7].author.id | https://openalex.org/A4226112207 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-6767-063X |
| authorships[7].author.display_name | Marie-Pierre Meurville |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Marie-Pierre Meurville |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A1994840518 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-3935-6509 |
| authorships[8].author.display_name | Bernard Clot |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Bernard Clot |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A4290034659 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-0700-283X |
| authorships[9].author.display_name | Sophie Erb |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Sophie Erb |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A4222704626 |
| authorships[10].author.orcid | https://orcid.org/0000-0001-9455-6023 |
| authorships[10].author.display_name | Mária Lbadaoui-Darvas |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Maria Lbadaoui-Darvas |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A1289253157 |
| authorships[11].author.orcid | https://orcid.org/0000-0002-6459-339X |
| authorships[11].author.display_name | Fiona Tummon |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Fiona Tummon |
| authorships[11].is_corresponding | False |
| authorships[12].author.id | https://openalex.org/A5082950483 |
| authorships[12].author.orcid | https://orcid.org/0000-0002-2066-6868 |
| authorships[12].author.display_name | Gian-Duri Lieberherr |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Gian-Duri Lieberherr |
| authorships[12].is_corresponding | False |
| authorships[13].author.id | https://openalex.org/A1501109987 |
| authorships[13].author.orcid | https://orcid.org/0000-0002-9911-415X |
| authorships[13].author.display_name | Benoît Crouzy |
| authorships[13].author_position | last |
| authorships[13].raw_author_name | Benoît Crouzy |
| authorships[13].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://egusphere.copernicus.org/preprints/2025/egusphere-2025-5440/egusphere-2025-5440.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-19T00:00:00 |
| display_name | A general framework for evaluating real-time bioaerosol classification algorithms |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-20T23:13:51.555489 |
| primary_topic.id | https://openalex.org/T10877 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.4780803322792053 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2723 |
| primary_topic.subfield.display_name | Immunology and Allergy |
| primary_topic.display_name | Allergic Rhinitis and Sensitization |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5194/egusphere-2025-5440 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://egusphere.copernicus.org/preprints/2025/egusphere-2025-5440/egusphere-2025-5440.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5194/egusphere-2025-5440 |
| primary_location.id | doi:10.5194/egusphere-2025-5440 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://egusphere.copernicus.org/preprints/2025/egusphere-2025-5440/egusphere-2025-5440.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5194/egusphere-2025-5440 |
| publication_date | 2025-11-19 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 16, 150 |
| abstract_inverted_index.We | 14, 73 |
| abstract_inverted_index.in | 2, 64 |
| abstract_inverted_index.of | 155, 159 |
| abstract_inverted_index.on | 22, 84, 111 |
| abstract_inverted_index.or | 141 |
| abstract_inverted_index.so | 177 |
| abstract_inverted_index.to | 9, 37, 106 |
| abstract_inverted_index.(1) | 25 |
| abstract_inverted_index.(2) | 34 |
| abstract_inverted_index.(3) | 42 |
| abstract_inverted_index.Its | 164 |
| abstract_inverted_index.Tau | 27 |
| abstract_inverted_index.The | 101 |
| abstract_inverted_index.and | 18, 31, 41, 58, 62, 70, 93, 113, 119, 144, 152, 162 |
| abstract_inverted_index.are | 51, 128, 181 |
| abstract_inverted_index.for | 77 |
| abstract_inverted_index.per | 53 |
| abstract_inverted_index.the | 122, 172 |
| abstract_inverted_index.was | 104 |
| abstract_inverted_index.2022 | 123 |
| abstract_inverted_index.This | 147 |
| abstract_inverted_index.data | 115 |
| abstract_inverted_index.each | 78 |
| abstract_inverted_index.even | 175 |
| abstract_inverted_index.five | 59 |
| abstract_inverted_index.from | 82, 116 |
| abstract_inverted_index.help | 167 |
| abstract_inverted_index.more | 176 |
| abstract_inverted_index.taxa | 140 |
| abstract_inverted_index.when | 178 |
| abstract_inverted_index.with | 121 |
| abstract_inverted_index.based | 21 |
| abstract_inverted_index.class | 54 |
| abstract_inverted_index.could | 166 |
| abstract_inverted_index.false | 48 |
| abstract_inverted_index.noise | 44, 91 |
| abstract_inverted_index.seven | 107 |
| abstract_inverted_index.three | 23 |
| abstract_inverted_index.across | 55, 171, 183 |
| abstract_inverted_index.allows | 149 |
| abstract_inverted_index.assess | 38 |
| abstract_inverted_index.graphs | 65 |
| abstract_inverted_index.limits | 96 |
| abstract_inverted_index.manual | 32, 86 |
| abstract_inverted_index.metric | 79 |
| abstract_inverted_index.pollen | 143 |
| abstract_inverted_index.ranges | 76 |
| abstract_inverted_index.ratio, | 45, 92 |
| abstract_inverted_index.Metrics | 50 |
| abstract_inverted_index.applied | 105 |
| abstract_inverted_index.between | 29, 137, 142 |
| abstract_inverted_index.biases, | 69 |
| abstract_inverted_index.device. | 163 |
| abstract_inverted_index.factor, | 36 |
| abstract_inverted_index.factor. | 100 |
| abstract_inverted_index.helping | 133 |
| abstract_inverted_index.optimal | 75 |
| abstract_inverted_index.present | 15 |
| abstract_inverted_index.provide | 74 |
| abstract_inverted_index.require | 6 |
| abstract_inverted_index.scaling | 35, 99 |
| abstract_inverted_index.similar | 139 |
| abstract_inverted_index.through | 130 |
| abstract_inverted_index.trained | 110 |
| abstract_inverted_index.updated | 7 |
| abstract_inverted_index.Advances | 1 |
| abstract_inverted_index.adoption | 165 |
| abstract_inverted_index.compared | 120, 129 |
| abstract_inverted_index.computed | 52 |
| abstract_inverted_index.datasets | 180 |
| abstract_inverted_index.devices, | 118 |
| abstract_inverted_index.evaluate | 10 |
| abstract_inverted_index.methods, | 132 |
| abstract_inverted_index.metrics: | 24 |
| abstract_inverted_index.particle | 11 |
| abstract_inverted_index.physical | 94 |
| abstract_inverted_index.regions. | 185 |
| abstract_inverted_index.research | 173 |
| abstract_inverted_index.sampling | 95 |
| abstract_inverted_index.scenario | 89 |
| abstract_inverted_index.stations | 60 |
| abstract_inverted_index.training | 17 |
| abstract_inverted_index.Abstract. | 0 |
| abstract_inverted_index.automatic | 3 |
| abstract_inverted_index.different | 184 |
| abstract_inverted_index.framework | 20, 103 |
| abstract_inverted_index.predicted | 30 |
| abstract_inverted_index.reporting | 170 |
| abstract_inverted_index.revealing | 66 |
| abstract_inverted_index.stations, | 61 |
| abstract_inverted_index.Classifier | 126 |
| abstract_inverted_index.acceptable | 98 |
| abstract_inverted_index.approaches | 8 |
| abstract_inverted_index.bioaerosol | 4 |
| abstract_inverted_index.calculated | 81 |
| abstract_inverted_index.classifier | 160 |
| abstract_inverted_index.co-located | 85 |
| abstract_inverted_index.community, | 174 |
| abstract_inverted_index.comparison | 154 |
| abstract_inverted_index.confidence | 56 |
| abstract_inverted_index.evaluation | 19, 102, 179 |
| abstract_inverted_index.holography | 112 |
| abstract_inverted_index.monitoring | 5 |
| abstract_inverted_index.non-pollen | 145 |
| abstract_inverted_index.off-season | 43, 47, 90 |
| abstract_inverted_index.particles. | 146 |
| abstract_inverted_index.thresholds | 57 |
| abstract_inverted_index.visualised | 63 |
| abstract_inverted_index.worst-case | 88 |
| abstract_inverted_index.Kendall’s | 26 |
| abstract_inverted_index.algorithms, | 157 |
| abstract_inverted_index.algorithms. | 13 |
| abstract_inverted_index.classifier. | 125 |
| abstract_inverted_index.classifiers | 109 |
| abstract_inverted_index.correlation | 28 |
| abstract_inverted_index.efficiency, | 40 |
| abstract_inverted_index.identifying | 134 |
| abstract_inverted_index.independent | 158 |
| abstract_inverted_index.methodology | 148 |
| abstract_inverted_index.performance | 169 |
| abstract_inverted_index.quantifying | 46 |
| abstract_inverted_index.standardise | 168 |
| abstract_inverted_index.trade-offs. | 72 |
| abstract_inverted_index.transparent | 151 |
| abstract_inverted_index.architecture | 161 |
| abstract_inverted_index.constraining | 97 |
| abstract_inverted_index.correlations | 83 |
| abstract_inverted_index.fluorescence | 114 |
| abstract_inverted_index.overfitting, | 67 |
| abstract_inverted_index.performances | 127 |
| abstract_inverted_index.predictions. | 49 |
| abstract_inverted_index.reproducible | 153 |
| abstract_inverted_index.respectively | 80 |
| abstract_inverted_index.standardised | 182 |
| abstract_inverted_index.SwisensPoleno | 117 |
| abstract_inverted_index.deep-learning | 108 |
| abstract_inverted_index.measurements, | 87 |
| abstract_inverted_index.visualisation | 131 |
| abstract_inverted_index.classification | 12, 156 |
| abstract_inverted_index.identification | 39 |
| abstract_inverted_index.over-training, | 135 |
| abstract_inverted_index.concentrations, | 33 |
| abstract_inverted_index.holography-only | 124 |
| abstract_inverted_index.morphologically | 138 |
| abstract_inverted_index.station-specific | 68 |
| abstract_inverted_index.misclassification | 136 |
| abstract_inverted_index.sensitivity–specificity | 71 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 14 |
| citation_normalized_percentile.value | 0.82155643 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |