A General Optimization-based Framework for Local Odometry Estimation with Multiple Sensors Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1901.03638
Nowadays, more and more sensors are equipped on robots to increase robustness and autonomous ability. We have seen various sensor suites equipped on different platforms, such as stereo cameras on ground vehicles, a monocular camera with an IMU (Inertial Measurement Unit) on mobile phones, and stereo cameras with an IMU on aerial robots. Although many algorithms for state estimation have been proposed in the past, they are usually applied to a single sensor or a specific sensor suite. Few of them can be employed with multiple sensor choices. In this paper, we proposed a general optimization-based framework for odometry estimation, which supports multiple sensor sets. Every sensor is treated as a general factor in our framework. Factors which share common state variables are summed together to build the optimization problem. We further demonstrate the generality with visual and inertial sensors, which form three sensor suites (stereo cameras, a monocular camera with an IMU, and stereo cameras with an IMU). We validate the performance of our system on public datasets and through real-world experiments with multiple sensors. Results are compared against other state-of-the-art algorithms. We highlight that our system is a general framework, which can easily fuse various sensors in a pose graph optimization. Our implementations are open source\footnote{https://github.com/HKUST-Aerial-Robotics/VINS-Fusion}.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1901.03638
- https://arxiv.org/pdf/1901.03638
- OA Status
- green
- Cited By
- 296
- References
- 29
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2909063396
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2909063396Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1901.03638Digital Object Identifier
- Title
-
A General Optimization-based Framework for Local Odometry Estimation with Multiple SensorsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-01-11Full publication date if available
- Authors
-
Tong Qin, Jie Pan, Shaozu Cao, Shaojie ShenList of authors in order
- Landing page
-
https://arxiv.org/abs/1901.03638Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1901.03638Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1901.03638Direct OA link when available
- Concepts
-
Inertial measurement unit, Odometry, Artificial intelligence, Computer vision, Computer science, Robustness (evolution), Monocular, Robotics, Robot, Factor graph, Image sensor, Simultaneous localization and mapping, Fuse (electrical), Pose, Mobile robot, Engineering, Decoding methods, Biochemistry, Telecommunications, Chemistry, Electrical engineering, GeneTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
296Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 13, 2024: 57, 2023: 54, 2022: 42, 2021: 66Per-year citation counts (last 5 years)
- References (count)
-
29Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2909063396 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1901.03638 |
| ids.doi | https://doi.org/10.48550/arxiv.1901.03638 |
| ids.mag | 2909063396 |
| ids.openalex | https://openalex.org/W2909063396 |
| fwci | |
| type | preprint |
| title | A General Optimization-based Framework for Local Odometry Estimation with Multiple Sensors |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10191 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Robotics and Sensor-Based Localization |
| topics[1].id | https://openalex.org/T10586 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9988999962806702 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Robotic Path Planning Algorithms |
| topics[2].id | https://openalex.org/T10326 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9914000034332275 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Indoor and Outdoor Localization Technologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C79061980 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8410376310348511 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q941680 |
| concepts[0].display_name | Inertial measurement unit |
| concepts[1].id | https://openalex.org/C49441653 |
| concepts[1].level | 4 |
| concepts[1].score | 0.7952092885971069 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2014717 |
| concepts[1].display_name | Odometry |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.7550827264785767 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C31972630 |
| concepts[3].level | 1 |
| concepts[3].score | 0.7194793224334717 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[3].display_name | Computer vision |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.7171792387962341 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C63479239 |
| concepts[5].level | 3 |
| concepts[5].score | 0.621519148349762 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[5].display_name | Robustness (evolution) |
| concepts[6].id | https://openalex.org/C65909025 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5315864682197571 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1945033 |
| concepts[6].display_name | Monocular |
| concepts[7].id | https://openalex.org/C34413123 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5035623908042908 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q170978 |
| concepts[7].display_name | Robotics |
| concepts[8].id | https://openalex.org/C90509273 |
| concepts[8].level | 2 |
| concepts[8].score | 0.48008328676223755 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11012 |
| concepts[8].display_name | Robot |
| concepts[9].id | https://openalex.org/C159246509 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4672659933567047 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5428725 |
| concepts[9].display_name | Factor graph |
| concepts[10].id | https://openalex.org/C76935873 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4327220320701599 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q209121 |
| concepts[10].display_name | Image sensor |
| concepts[11].id | https://openalex.org/C86369673 |
| concepts[11].level | 4 |
| concepts[11].score | 0.4243497848510742 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1203659 |
| concepts[11].display_name | Simultaneous localization and mapping |
| concepts[12].id | https://openalex.org/C141353440 |
| concepts[12].level | 2 |
| concepts[12].score | 0.41614192724227905 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q182221 |
| concepts[12].display_name | Fuse (electrical) |
| concepts[13].id | https://openalex.org/C52102323 |
| concepts[13].level | 2 |
| concepts[13].score | 0.41594451665878296 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1671968 |
| concepts[13].display_name | Pose |
| concepts[14].id | https://openalex.org/C19966478 |
| concepts[14].level | 3 |
| concepts[14].score | 0.3718429505825043 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q4810574 |
| concepts[14].display_name | Mobile robot |
| concepts[15].id | https://openalex.org/C127413603 |
| concepts[15].level | 0 |
| concepts[15].score | 0.16266363859176636 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[15].display_name | Engineering |
| concepts[16].id | https://openalex.org/C57273362 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q576722 |
| concepts[16].display_name | Decoding methods |
| concepts[17].id | https://openalex.org/C55493867 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[17].display_name | Biochemistry |
| concepts[18].id | https://openalex.org/C76155785 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[18].display_name | Telecommunications |
| concepts[19].id | https://openalex.org/C185592680 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[19].display_name | Chemistry |
| concepts[20].id | https://openalex.org/C119599485 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[20].display_name | Electrical engineering |
| concepts[21].id | https://openalex.org/C104317684 |
| concepts[21].level | 2 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[21].display_name | Gene |
| keywords[0].id | https://openalex.org/keywords/inertial-measurement-unit |
| keywords[0].score | 0.8410376310348511 |
| keywords[0].display_name | Inertial measurement unit |
| keywords[1].id | https://openalex.org/keywords/odometry |
| keywords[1].score | 0.7952092885971069 |
| keywords[1].display_name | Odometry |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.7550827264785767 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-vision |
| keywords[3].score | 0.7194793224334717 |
| keywords[3].display_name | Computer vision |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.7171792387962341 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/robustness |
| keywords[5].score | 0.621519148349762 |
| keywords[5].display_name | Robustness (evolution) |
| keywords[6].id | https://openalex.org/keywords/monocular |
| keywords[6].score | 0.5315864682197571 |
| keywords[6].display_name | Monocular |
| keywords[7].id | https://openalex.org/keywords/robotics |
| keywords[7].score | 0.5035623908042908 |
| keywords[7].display_name | Robotics |
| keywords[8].id | https://openalex.org/keywords/robot |
| keywords[8].score | 0.48008328676223755 |
| keywords[8].display_name | Robot |
| keywords[9].id | https://openalex.org/keywords/factor-graph |
| keywords[9].score | 0.4672659933567047 |
| keywords[9].display_name | Factor graph |
| keywords[10].id | https://openalex.org/keywords/image-sensor |
| keywords[10].score | 0.4327220320701599 |
| keywords[10].display_name | Image sensor |
| keywords[11].id | https://openalex.org/keywords/simultaneous-localization-and-mapping |
| keywords[11].score | 0.4243497848510742 |
| keywords[11].display_name | Simultaneous localization and mapping |
| keywords[12].id | https://openalex.org/keywords/fuse |
| keywords[12].score | 0.41614192724227905 |
| keywords[12].display_name | Fuse (electrical) |
| keywords[13].id | https://openalex.org/keywords/pose |
| keywords[13].score | 0.41594451665878296 |
| keywords[13].display_name | Pose |
| keywords[14].id | https://openalex.org/keywords/mobile-robot |
| keywords[14].score | 0.3718429505825043 |
| keywords[14].display_name | Mobile robot |
| keywords[15].id | https://openalex.org/keywords/engineering |
| keywords[15].score | 0.16266363859176636 |
| keywords[15].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1901.03638 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1901.03638 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1901.03638 |
| locations[1].id | doi:10.48550/arxiv.1901.03638 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1901.03638 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5082261032 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0994-9816 |
| authorships[0].author.display_name | Tong Qin |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tong Qin |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101789653 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9974-651X |
| authorships[1].author.display_name | Jie Pan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jie Pan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5012354207 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9080-0447 |
| authorships[2].author.display_name | Shaozu Cao |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shaozu Cao |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5001947944 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5573-2909 |
| authorships[3].author.display_name | Shaojie Shen |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Shaojie Shen |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1901.03638 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2019-01-25T00:00:00 |
| display_name | A General Optimization-based Framework for Local Odometry Estimation with Multiple Sensors |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10191 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Robotics and Sensor-Based Localization |
| related_works | https://openalex.org/W4387400821, https://openalex.org/W2970345194, https://openalex.org/W4386821976, https://openalex.org/W4313288997, https://openalex.org/W2807473852, https://openalex.org/W2149015029, https://openalex.org/W48401697, https://openalex.org/W2152464524, https://openalex.org/W4360995509, https://openalex.org/W3105048402 |
| cited_by_count | 296 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 13 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 57 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 54 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 42 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 66 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 57 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 7 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1901.03638 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1901.03638 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1901.03638 |
| primary_location.id | pmh:oai:arXiv.org:1901.03638 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1901.03638 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1901.03638 |
| publication_date | 2019-01-11 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W612478963, https://openalex.org/W2538522345, https://openalex.org/W2150066425, https://openalex.org/W2151290401, https://openalex.org/W2396274919, https://openalex.org/W2127752689, https://openalex.org/W2153054365, https://openalex.org/W2798513908, https://openalex.org/W2091790851, https://openalex.org/W1970504153, https://openalex.org/W2745859992, https://openalex.org/W2064451896, https://openalex.org/W2792006036, https://openalex.org/W2046033161, https://openalex.org/W1968315983, https://openalex.org/W1512698229, https://openalex.org/W2130103520, https://openalex.org/W2482726005, https://openalex.org/W2061319289, https://openalex.org/W2216550548, https://openalex.org/W2565755350, https://openalex.org/W2296228853, https://openalex.org/W2118877769, https://openalex.org/W1993267444, https://openalex.org/W2474281075, https://openalex.org/W3103648783, https://openalex.org/W2006368361, https://openalex.org/W2021851106, https://openalex.org/W2118223742 |
| referenced_works_count | 29 |
| abstract_inverted_index.a | 32, 70, 74, 93, 110, 147, 189, 199 |
| abstract_inverted_index.In | 88 |
| abstract_inverted_index.We | 15, 130, 159, 183 |
| abstract_inverted_index.an | 36, 48, 151, 157 |
| abstract_inverted_index.as | 26, 109 |
| abstract_inverted_index.be | 82 |
| abstract_inverted_index.in | 62, 113, 198 |
| abstract_inverted_index.is | 107, 188 |
| abstract_inverted_index.of | 79, 163 |
| abstract_inverted_index.on | 7, 22, 29, 41, 50, 166 |
| abstract_inverted_index.or | 73 |
| abstract_inverted_index.to | 9, 69, 125 |
| abstract_inverted_index.we | 91 |
| abstract_inverted_index.Few | 78 |
| abstract_inverted_index.IMU | 37, 49 |
| abstract_inverted_index.Our | 203 |
| abstract_inverted_index.and | 2, 12, 44, 137, 153, 169 |
| abstract_inverted_index.are | 5, 66, 122, 177, 205 |
| abstract_inverted_index.can | 81, 193 |
| abstract_inverted_index.for | 56, 97 |
| abstract_inverted_index.our | 114, 164, 186 |
| abstract_inverted_index.the | 63, 127, 133, 161 |
| abstract_inverted_index.IMU, | 152 |
| abstract_inverted_index.been | 60 |
| abstract_inverted_index.form | 141 |
| abstract_inverted_index.fuse | 195 |
| abstract_inverted_index.have | 16, 59 |
| abstract_inverted_index.many | 54 |
| abstract_inverted_index.more | 1, 3 |
| abstract_inverted_index.open | 206 |
| abstract_inverted_index.pose | 200 |
| abstract_inverted_index.seen | 17 |
| abstract_inverted_index.such | 25 |
| abstract_inverted_index.that | 185 |
| abstract_inverted_index.them | 80 |
| abstract_inverted_index.they | 65 |
| abstract_inverted_index.this | 89 |
| abstract_inverted_index.with | 35, 47, 84, 135, 150, 156, 173 |
| abstract_inverted_index.Every | 105 |
| abstract_inverted_index.IMU). | 158 |
| abstract_inverted_index.Unit) | 40 |
| abstract_inverted_index.build | 126 |
| abstract_inverted_index.graph | 201 |
| abstract_inverted_index.other | 180 |
| abstract_inverted_index.past, | 64 |
| abstract_inverted_index.sets. | 104 |
| abstract_inverted_index.share | 118 |
| abstract_inverted_index.state | 57, 120 |
| abstract_inverted_index.three | 142 |
| abstract_inverted_index.which | 100, 117, 140, 192 |
| abstract_inverted_index.aerial | 51 |
| abstract_inverted_index.camera | 34, 149 |
| abstract_inverted_index.common | 119 |
| abstract_inverted_index.easily | 194 |
| abstract_inverted_index.factor | 112 |
| abstract_inverted_index.ground | 30 |
| abstract_inverted_index.mobile | 42 |
| abstract_inverted_index.paper, | 90 |
| abstract_inverted_index.public | 167 |
| abstract_inverted_index.robots | 8 |
| abstract_inverted_index.sensor | 19, 72, 76, 86, 103, 106, 143 |
| abstract_inverted_index.single | 71 |
| abstract_inverted_index.stereo | 27, 45, 154 |
| abstract_inverted_index.suite. | 77 |
| abstract_inverted_index.suites | 20, 144 |
| abstract_inverted_index.summed | 123 |
| abstract_inverted_index.system | 165, 187 |
| abstract_inverted_index.visual | 136 |
| abstract_inverted_index.(stereo | 145 |
| abstract_inverted_index.Factors | 116 |
| abstract_inverted_index.Results | 176 |
| abstract_inverted_index.against | 179 |
| abstract_inverted_index.applied | 68 |
| abstract_inverted_index.cameras | 28, 46, 155 |
| abstract_inverted_index.further | 131 |
| abstract_inverted_index.general | 94, 111, 190 |
| abstract_inverted_index.phones, | 43 |
| abstract_inverted_index.robots. | 52 |
| abstract_inverted_index.sensors | 4, 197 |
| abstract_inverted_index.through | 170 |
| abstract_inverted_index.treated | 108 |
| abstract_inverted_index.usually | 67 |
| abstract_inverted_index.various | 18, 196 |
| abstract_inverted_index.Although | 53 |
| abstract_inverted_index.ability. | 14 |
| abstract_inverted_index.cameras, | 146 |
| abstract_inverted_index.choices. | 87 |
| abstract_inverted_index.compared | 178 |
| abstract_inverted_index.datasets | 168 |
| abstract_inverted_index.employed | 83 |
| abstract_inverted_index.equipped | 6, 21 |
| abstract_inverted_index.increase | 10 |
| abstract_inverted_index.inertial | 138 |
| abstract_inverted_index.multiple | 85, 102, 174 |
| abstract_inverted_index.odometry | 98 |
| abstract_inverted_index.problem. | 129 |
| abstract_inverted_index.proposed | 61, 92 |
| abstract_inverted_index.sensors, | 139 |
| abstract_inverted_index.sensors. | 175 |
| abstract_inverted_index.specific | 75 |
| abstract_inverted_index.supports | 101 |
| abstract_inverted_index.together | 124 |
| abstract_inverted_index.validate | 160 |
| abstract_inverted_index.(Inertial | 38 |
| abstract_inverted_index.Nowadays, | 0 |
| abstract_inverted_index.different | 23 |
| abstract_inverted_index.framework | 96 |
| abstract_inverted_index.highlight | 184 |
| abstract_inverted_index.monocular | 33, 148 |
| abstract_inverted_index.variables | 121 |
| abstract_inverted_index.vehicles, | 31 |
| abstract_inverted_index.algorithms | 55 |
| abstract_inverted_index.autonomous | 13 |
| abstract_inverted_index.estimation | 58 |
| abstract_inverted_index.framework, | 191 |
| abstract_inverted_index.framework. | 115 |
| abstract_inverted_index.generality | 134 |
| abstract_inverted_index.platforms, | 24 |
| abstract_inverted_index.real-world | 171 |
| abstract_inverted_index.robustness | 11 |
| abstract_inverted_index.Measurement | 39 |
| abstract_inverted_index.algorithms. | 182 |
| abstract_inverted_index.demonstrate | 132 |
| abstract_inverted_index.estimation, | 99 |
| abstract_inverted_index.experiments | 172 |
| abstract_inverted_index.performance | 162 |
| abstract_inverted_index.optimization | 128 |
| abstract_inverted_index.optimization. | 202 |
| abstract_inverted_index.implementations | 204 |
| abstract_inverted_index.state-of-the-art | 181 |
| abstract_inverted_index.optimization-based | 95 |
| abstract_inverted_index.source\footnote{https://github.com/HKUST-Aerial-Robotics/VINS-Fusion}. | 207 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/17 |
| sustainable_development_goals[0].score | 0.4699999988079071 |
| sustainable_development_goals[0].display_name | Partnerships for the goals |
| citation_normalized_percentile |