A generalisable data-augmented turbulence model with progressive and interpretable corrections for incompressible wall-bounded flows Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2503.18568
The integration of interpretability and generalisability in data-driven turbulence modelling remains a fundamental challenge for computational fluid dynamics applications. This study yields a generalisable advancement of the $k$-$ω$ Shear Stress Transport (SST) model through a progressive data-augmented framework, combining Bayesian optimisation with physics-guided corrections to improve the predictions of anisotropy-induced secondary flows and flow separation simultaneously. Two interpretable modifications are systematically embedded: 1) a non-linear Reynolds stress anisotropy correction to enhance secondary flow predictions, and 2) an activation-based separation correction in the $ω$-equation, regulated by an optimised power-law function to locally adjust turbulent viscosity under adverse pressure gradients. The model is trained using a multi-case computational fluid dynamics-driven a posteriori approach, incorporating periodic hills, duct flow, and channel flow to balance correction efficacy with baseline consistency. Validation across multiple unseen cases -- spanning flat-plate boundary layers, high-Reynolds-number periodic hills, and flow over diverse obstacle configurations -- demonstrates enhanced accuracy in velocity profiles, recirculation zones, streamwise vorticity, and skin friction distributions while retaining the robustness of the original $k$-$ω$ SST in attached flows. Sparsity-enforced regression ensures reduced parametric complexity, preserving computational efficiency and physical transparency. Results underscore the framework's ability to generalise across geometries and Reynolds numbers without destabilising corrections, offering a validated framework toward deployable, data-augmented turbulence models for numerical simulations.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2503.18568
- https://arxiv.org/pdf/2503.18568
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416525409
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416525409Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2503.18568Digital Object Identifier
- Title
-
A generalisable data-augmented turbulence model with progressive and interpretable corrections for incompressible wall-bounded flowsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-24Full publication date if available
- Authors
-
Mario Javier Rincón, Martino Reclari, Xiang I. A. YangList of authors in order
- Landing page
-
https://arxiv.org/abs/2503.18568Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2503.18568Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2503.18568Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416525409 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2503.18568 |
| ids.doi | https://doi.org/10.48550/arxiv.2503.18568 |
| ids.openalex | https://openalex.org/W4416525409 |
| fwci | |
| type | preprint |
| title | A generalisable data-augmented turbulence model with progressive and interpretable corrections for incompressible wall-bounded flows |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2503.18568 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2503.18568 |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2503.18568 |
| locations[1].id | doi:10.48550/arxiv.2503.18568 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2503.18568 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5054813893 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3239-6612 |
| authorships[0].author.display_name | Mario Javier Rincón |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rincón, Mario J. |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5069633974 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9790-7335 |
| authorships[1].author.display_name | Martino Reclari |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Reclari, Martino |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5085025441 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4940-5976 |
| authorships[2].author.display_name | Xiang I. A. Yang |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Yang, Xiang I. A. |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2503.18568 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A generalisable data-augmented turbulence model with progressive and interpretable corrections for incompressible wall-bounded flows |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T16:31:44.923674 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2503.18568 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2503.18568 |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2503.18568 |
| primary_location.id | pmh:oai:arXiv.org:2503.18568 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2503.18568 |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2503.18568 |
| publication_date | 2025-03-24 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 11, 22, 34, 63, 103, 108, 200 |
| abstract_inverted_index.-- | 131, 145 |
| abstract_inverted_index.1) | 62 |
| abstract_inverted_index.2) | 75 |
| abstract_inverted_index.an | 76, 85 |
| abstract_inverted_index.by | 84 |
| abstract_inverted_index.in | 6, 80, 149, 169 |
| abstract_inverted_index.is | 100 |
| abstract_inverted_index.of | 2, 25, 48, 164 |
| abstract_inverted_index.to | 44, 69, 89, 119, 189 |
| abstract_inverted_index.SST | 168 |
| abstract_inverted_index.The | 0, 98 |
| abstract_inverted_index.Two | 56 |
| abstract_inverted_index.and | 4, 52, 74, 116, 139, 156, 181, 193 |
| abstract_inverted_index.are | 59 |
| abstract_inverted_index.for | 14, 208 |
| abstract_inverted_index.the | 26, 46, 81, 162, 165, 186 |
| abstract_inverted_index.This | 19 |
| abstract_inverted_index.duct | 114 |
| abstract_inverted_index.flow | 53, 72, 118, 140 |
| abstract_inverted_index.over | 141 |
| abstract_inverted_index.skin | 157 |
| abstract_inverted_index.with | 41, 123 |
| abstract_inverted_index.(SST) | 31 |
| abstract_inverted_index.Shear | 28 |
| abstract_inverted_index.cases | 130 |
| abstract_inverted_index.flow, | 115 |
| abstract_inverted_index.flows | 51 |
| abstract_inverted_index.fluid | 16, 106 |
| abstract_inverted_index.model | 32, 99 |
| abstract_inverted_index.study | 20 |
| abstract_inverted_index.under | 94 |
| abstract_inverted_index.using | 102 |
| abstract_inverted_index.while | 160 |
| abstract_inverted_index.Stress | 29 |
| abstract_inverted_index.across | 127, 191 |
| abstract_inverted_index.adjust | 91 |
| abstract_inverted_index.flows. | 171 |
| abstract_inverted_index.hills, | 113, 138 |
| abstract_inverted_index.models | 207 |
| abstract_inverted_index.stress | 66 |
| abstract_inverted_index.toward | 203 |
| abstract_inverted_index.unseen | 129 |
| abstract_inverted_index.yields | 21 |
| abstract_inverted_index.zones, | 153 |
| abstract_inverted_index.Results | 184 |
| abstract_inverted_index.ability | 188 |
| abstract_inverted_index.adverse | 95 |
| abstract_inverted_index.balance | 120 |
| abstract_inverted_index.channel | 117 |
| abstract_inverted_index.diverse | 142 |
| abstract_inverted_index.enhance | 70 |
| abstract_inverted_index.ensures | 174 |
| abstract_inverted_index.improve | 45 |
| abstract_inverted_index.layers, | 135 |
| abstract_inverted_index.locally | 90 |
| abstract_inverted_index.numbers | 195 |
| abstract_inverted_index.reduced | 175 |
| abstract_inverted_index.remains | 10 |
| abstract_inverted_index.through | 33 |
| abstract_inverted_index.trained | 101 |
| abstract_inverted_index.without | 196 |
| abstract_inverted_index.$k$-$ω$ | 27, 167 |
| abstract_inverted_index.Bayesian | 39 |
| abstract_inverted_index.Reynolds | 65, 194 |
| abstract_inverted_index.accuracy | 148 |
| abstract_inverted_index.attached | 170 |
| abstract_inverted_index.baseline | 124 |
| abstract_inverted_index.boundary | 134 |
| abstract_inverted_index.dynamics | 17 |
| abstract_inverted_index.efficacy | 122 |
| abstract_inverted_index.enhanced | 147 |
| abstract_inverted_index.friction | 158 |
| abstract_inverted_index.function | 88 |
| abstract_inverted_index.multiple | 128 |
| abstract_inverted_index.obstacle | 143 |
| abstract_inverted_index.offering | 199 |
| abstract_inverted_index.original | 166 |
| abstract_inverted_index.periodic | 112, 137 |
| abstract_inverted_index.physical | 182 |
| abstract_inverted_index.pressure | 96 |
| abstract_inverted_index.spanning | 132 |
| abstract_inverted_index.velocity | 150 |
| abstract_inverted_index.Transport | 30 |
| abstract_inverted_index.approach, | 110 |
| abstract_inverted_index.challenge | 13 |
| abstract_inverted_index.combining | 38 |
| abstract_inverted_index.embedded: | 61 |
| abstract_inverted_index.framework | 202 |
| abstract_inverted_index.modelling | 9 |
| abstract_inverted_index.numerical | 209 |
| abstract_inverted_index.optimised | 86 |
| abstract_inverted_index.power-law | 87 |
| abstract_inverted_index.profiles, | 151 |
| abstract_inverted_index.regulated | 83 |
| abstract_inverted_index.retaining | 161 |
| abstract_inverted_index.secondary | 50, 71 |
| abstract_inverted_index.turbulent | 92 |
| abstract_inverted_index.validated | 201 |
| abstract_inverted_index.viscosity | 93 |
| abstract_inverted_index.Validation | 126 |
| abstract_inverted_index.anisotropy | 67 |
| abstract_inverted_index.correction | 68, 79, 121 |
| abstract_inverted_index.efficiency | 180 |
| abstract_inverted_index.flat-plate | 133 |
| abstract_inverted_index.framework, | 37 |
| abstract_inverted_index.generalise | 190 |
| abstract_inverted_index.geometries | 192 |
| abstract_inverted_index.gradients. | 97 |
| abstract_inverted_index.multi-case | 104 |
| abstract_inverted_index.non-linear | 64 |
| abstract_inverted_index.parametric | 176 |
| abstract_inverted_index.posteriori | 109 |
| abstract_inverted_index.preserving | 178 |
| abstract_inverted_index.regression | 173 |
| abstract_inverted_index.robustness | 163 |
| abstract_inverted_index.separation | 54, 78 |
| abstract_inverted_index.streamwise | 154 |
| abstract_inverted_index.turbulence | 8, 206 |
| abstract_inverted_index.underscore | 185 |
| abstract_inverted_index.vorticity, | 155 |
| abstract_inverted_index.advancement | 24 |
| abstract_inverted_index.complexity, | 177 |
| abstract_inverted_index.corrections | 43 |
| abstract_inverted_index.data-driven | 7 |
| abstract_inverted_index.deployable, | 204 |
| abstract_inverted_index.framework's | 187 |
| abstract_inverted_index.fundamental | 12 |
| abstract_inverted_index.integration | 1 |
| abstract_inverted_index.predictions | 47 |
| abstract_inverted_index.progressive | 35 |
| abstract_inverted_index.consistency. | 125 |
| abstract_inverted_index.corrections, | 198 |
| abstract_inverted_index.demonstrates | 146 |
| abstract_inverted_index.optimisation | 40 |
| abstract_inverted_index.predictions, | 73 |
| abstract_inverted_index.simulations. | 210 |
| abstract_inverted_index.applications. | 18 |
| abstract_inverted_index.computational | 15, 105, 179 |
| abstract_inverted_index.destabilising | 197 |
| abstract_inverted_index.distributions | 159 |
| abstract_inverted_index.generalisable | 23 |
| abstract_inverted_index.incorporating | 111 |
| abstract_inverted_index.interpretable | 57 |
| abstract_inverted_index.modifications | 58 |
| abstract_inverted_index.recirculation | 152 |
| abstract_inverted_index.transparency. | 183 |
| abstract_inverted_index.$ω$-equation, | 82 |
| abstract_inverted_index.configurations | 144 |
| abstract_inverted_index.data-augmented | 36, 205 |
| abstract_inverted_index.physics-guided | 42 |
| abstract_inverted_index.systematically | 60 |
| abstract_inverted_index.dynamics-driven | 107 |
| abstract_inverted_index.simultaneously. | 55 |
| abstract_inverted_index.activation-based | 77 |
| abstract_inverted_index.generalisability | 5 |
| abstract_inverted_index.interpretability | 3 |
| abstract_inverted_index.Sparsity-enforced | 172 |
| abstract_inverted_index.anisotropy-induced | 49 |
| abstract_inverted_index.high-Reynolds-number | 136 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |