A Generalization of the Noisy-MAX Parameterization for Biomedical Applications Article Swipe
The development of Bayesian networks for biomedical applications is often difficult because the number of parameters defining each conditional probability \ntable grows exponentially with the increase in the number of parent variables. The Noisy-MAX parameterization have been extensively used to reduce the \nnumber of parameters defining a conditional probability table when causes independently influence the response. Unfortunately, the Noisy-MAX parameterization is not suited to a non-ordinal response variable. In this paper, we propose a generalization of the Noisy-MAX parameterization, called SoftDom parameterization, which is suited to a general biomedical response variable influenced by independent causal determinants.
Related Topics
Metadata
- Type
- article
- Language
- en
- Landing Page
- http://hdl.handle.net/2158/1075445
- http://local.disia.unifi.it/wp_disia/2016/wp_disia_2016_06.pdf
- OA Status
- green
- Cited By
- 1
- References
- 3
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2620026101
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2620026101Canonical identifier for this work in OpenAlex
- Title
-
A Generalization of the Noisy-MAX Parameterization for Biomedical ApplicationsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2016Year of publication
- Publication date
-
2016-01-01Full publication date if available
- Authors
-
Alessandro Magrini, Davide Luciani, Federico Mattia StefaniniList of authors in order
- Landing page
-
https://hdl.handle.net/2158/1075445Publisher landing page
- PDF URL
-
https://local.disia.unifi.it/wp_disia/2016/wp_disia_2016_06.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://local.disia.unifi.it/wp_disia/2016/wp_disia_2016_06.pdfDirect OA link when available
- Concepts
-
Generalization, Computer science, Artificial intelligence, Mathematics, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2020: 1Per-year citation counts (last 5 years)
- References (count)
-
3Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2620026101 |
|---|---|
| doi | |
| ids.mag | 2620026101 |
| ids.openalex | https://openalex.org/W2620026101 |
| fwci | 0.0 |
| type | article |
| title | A Generalization of the Noisy-MAX Parameterization for Biomedical Applications |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 0 |
| biblio.first_page | 0 |
| topics[0].id | https://openalex.org/T10052 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9847999811172485 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Medical Image Segmentation Techniques |
| topics[1].id | https://openalex.org/T12072 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9789000153541565 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and Algorithms |
| topics[2].id | https://openalex.org/T10522 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9714999794960022 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Medical Imaging Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C177148314 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5884612202644348 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[0].display_name | Generalization |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4527949094772339 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.43132826685905457 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.34687376022338867 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C134306372 |
| concepts[4].level | 1 |
| concepts[4].score | 0.08712214231491089 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[4].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/generalization |
| keywords[0].score | 0.5884612202644348 |
| keywords[0].display_name | Generalization |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.4527949094772339 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.43132826685905457 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.34687376022338867 |
| keywords[3].display_name | Mathematics |
| keywords[4].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[4].score | 0.08712214231491089 |
| keywords[4].display_name | Mathematical analysis |
| language | en |
| locations[0].id | pmh:oai:flore.unifi.it:2158/1075445 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402033 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Florence Research (University of Florence) |
| locations[0].source.host_organization | https://openalex.org/I45084792 |
| locations[0].source.host_organization_name | University of Florence |
| locations[0].source.host_organization_lineage | https://openalex.org/I45084792 |
| locations[0].license | |
| locations[0].pdf_url | http://local.disia.unifi.it/wp_disia/2016/wp_disia_2016_06.pdf |
| locations[0].version | submittedVersion |
| locations[0].raw_type | info:eu-repo/semantics/other |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://hdl.handle.net/2158/1075445 |
| locations[1].id | mag:2620026101 |
| locations[1].is_oa | False |
| locations[1].source | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://flore.unifi.it/handle/2158/1075445 |
| authorships[0].author.id | https://openalex.org/A5012556437 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7278-5332 |
| authorships[0].author.display_name | Alessandro Magrini |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Alessandro Magrini |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5021832428 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6966-2868 |
| authorships[1].author.display_name | Davide Luciani |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Davide Luciani |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5002341562 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4248-6275 |
| authorships[2].author.display_name | Federico Mattia Stefanini |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Federico Mattia Stefanini |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://local.disia.unifi.it/wp_disia/2016/wp_disia_2016_06.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Generalization of the Noisy-MAX Parameterization for Biomedical Applications |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T04:12:42.849631 |
| primary_topic.id | https://openalex.org/T10052 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9847999811172485 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Medical Image Segmentation Techniques |
| related_works | https://openalex.org/W2964026049, https://openalex.org/W2291406709, https://openalex.org/W3183914341, https://openalex.org/W2995309313, https://openalex.org/W3007638742, https://openalex.org/W2101813487, https://openalex.org/W1483482530, https://openalex.org/W2061212529, https://openalex.org/W1776377774, https://openalex.org/W2805981122, https://openalex.org/W1996814159, https://openalex.org/W2964050205, https://openalex.org/W2513020903, https://openalex.org/W1913227953, https://openalex.org/W3208496437, https://openalex.org/W3124887834, https://openalex.org/W1497971605, https://openalex.org/W2124984402, https://openalex.org/W2150032453, https://openalex.org/W3104393726 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2020 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:flore.unifi.it:2158/1075445 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402033 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Florence Research (University of Florence) |
| best_oa_location.source.host_organization | https://openalex.org/I45084792 |
| best_oa_location.source.host_organization_name | University of Florence |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I45084792 |
| best_oa_location.license | |
| best_oa_location.pdf_url | http://local.disia.unifi.it/wp_disia/2016/wp_disia_2016_06.pdf |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | info:eu-repo/semantics/other |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://hdl.handle.net/2158/1075445 |
| primary_location.id | pmh:oai:flore.unifi.it:2158/1075445 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402033 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Florence Research (University of Florence) |
| primary_location.source.host_organization | https://openalex.org/I45084792 |
| primary_location.source.host_organization_name | University of Florence |
| primary_location.source.host_organization_lineage | https://openalex.org/I45084792 |
| primary_location.license | |
| primary_location.pdf_url | http://local.disia.unifi.it/wp_disia/2016/wp_disia_2016_06.pdf |
| primary_location.version | submittedVersion |
| primary_location.raw_type | info:eu-repo/semantics/other |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://hdl.handle.net/2158/1075445 |
| publication_date | 2016-01-01 |
| publication_year | 2016 |
| referenced_works | https://openalex.org/W2101736851, https://openalex.org/W2096242147, https://openalex.org/W1546613574 |
| referenced_works_count | 3 |
| abstract_inverted_index.a | 44, 62, 71, 84 |
| abstract_inverted_index.In | 66 |
| abstract_inverted_index.by | 90 |
| abstract_inverted_index.in | 25 |
| abstract_inverted_index.is | 8, 58, 81 |
| abstract_inverted_index.of | 2, 14, 28, 41, 73 |
| abstract_inverted_index.to | 38, 61, 83 |
| abstract_inverted_index.we | 69 |
| abstract_inverted_index.The | 0, 31 |
| abstract_inverted_index.for | 5 |
| abstract_inverted_index.not | 59 |
| abstract_inverted_index.the | 12, 23, 26, 52, 55, 74 |
| abstract_inverted_index.been | 35 |
| abstract_inverted_index.each | 17 |
| abstract_inverted_index.have | 34 |
| abstract_inverted_index.this | 67 |
| abstract_inverted_index.used | 37 |
| abstract_inverted_index.when | 48 |
| abstract_inverted_index.with | 22 |
| abstract_inverted_index.grows | 20 |
| abstract_inverted_index.often | 9 |
| abstract_inverted_index.table | 47 |
| abstract_inverted_index.which | 80 |
| abstract_inverted_index.called | 77 |
| abstract_inverted_index.causal | 92 |
| abstract_inverted_index.causes | 49 |
| abstract_inverted_index.number | 13, 27 |
| abstract_inverted_index.paper, | 68 |
| abstract_inverted_index.parent | 29 |
| abstract_inverted_index.reduce | 39 |
| abstract_inverted_index.suited | 60, 82 |
| abstract_inverted_index.SoftDom | 78 |
| abstract_inverted_index.because | 11 |
| abstract_inverted_index.general | 85 |
| abstract_inverted_index.propose | 70 |
| abstract_inverted_index.Bayesian | 3 |
| abstract_inverted_index.defining | 16, 43 |
| abstract_inverted_index.increase | 24 |
| abstract_inverted_index.networks | 4 |
| abstract_inverted_index.response | 64, 87 |
| abstract_inverted_index.variable | 88 |
| abstract_inverted_index.Noisy-MAX | 32, 56, 75 |
| abstract_inverted_index.difficult | 10 |
| abstract_inverted_index.influence | 51 |
| abstract_inverted_index.response. | 53 |
| abstract_inverted_index.variable. | 65 |
| abstract_inverted_index.biomedical | 6, 86 |
| abstract_inverted_index.influenced | 89 |
| abstract_inverted_index.parameters | 15, 42 |
| abstract_inverted_index.variables. | 30 |
| abstract_inverted_index.conditional | 18, 45 |
| abstract_inverted_index.development | 1 |
| abstract_inverted_index.extensively | 36 |
| abstract_inverted_index.independent | 91 |
| abstract_inverted_index.non-ordinal | 63 |
| abstract_inverted_index.probability | 46 |
| abstract_inverted_index.applications | 7 |
| abstract_inverted_index.determinants. | 93 |
| abstract_inverted_index.exponentially | 21 |
| abstract_inverted_index.independently | 50 |
| abstract_inverted_index.Unfortunately, | 54 |
| abstract_inverted_index.generalization | 72 |
| abstract_inverted_index.parameterization | 33, 57 |
| abstract_inverted_index.the \nnumber | 40 |
| abstract_inverted_index.parameterization, | 76, 79 |
| abstract_inverted_index.probability \ntable | 19 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.19549462 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |