A Generalized Approach for Bayesian Gaussian Graphical Models Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.31234/osf.io/4s6fh
Bayesian Gaussian Graphical Models (BGGMs) are tools of growing popularity and interest in network psychometrics and probabilistic graphical modeling. However, some of the existing models are derived from different modeling principles that do not easily allow for extensions and combinations into new models. More specifically, the implementation of some models may not be flexible enough to test different priors or likelihoods. In this paper, we present a new approach to BGGMs that overcomes this limitation by allowing for the estimation of regularized partial correlations between any type of variables while also having an intuistic approach on how to decide about the priors. Our approach is based on using a transformation of the lower diagonal values of the Cholesky (or LDL) decomposition matrix as the parameters of the models, which can receive any zero-centered symmetric distribution as a prior, as well as to include moderators. We have developed the gbggm R package to implement some models based on this approach, and the potentials of the approach are demonstrated with a toy simulation. This new approach expands the range of applications and enhances the flexibility of BGGMs, making them more useful in a variety of contexts.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.31234/osf.io/4s6fh
- https://osf.io/4s6fh/download
- OA Status
- gold
- References
- 87
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387234129
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387234129Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.31234/osf.io/4s6fhDigital Object Identifier
- Title
-
A Generalized Approach for Bayesian Gaussian Graphical ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-09-30Full publication date if available
- Authors
-
Víthor Rosa Franco, Guilherme W. F. Barros, Marcos JiménezList of authors in order
- Landing page
-
https://doi.org/10.31234/osf.io/4s6fhPublisher landing page
- PDF URL
-
https://osf.io/4s6fh/downloadDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://osf.io/4s6fh/downloadDirect OA link when available
- Concepts
-
Prior probability, Graphical model, Cholesky decomposition, Computer science, Bayesian probability, Gaussian, Algorithm, Machine learning, Artificial intelligence, Eigenvalues and eigenvectors, Physics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
87Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387234129 |
|---|---|
| doi | https://doi.org/10.31234/osf.io/4s6fh |
| ids.doi | https://doi.org/10.31234/osf.io/4s6fh |
| ids.openalex | https://openalex.org/W4387234129 |
| fwci | 0.0 |
| type | preprint |
| title | A Generalized Approach for Bayesian Gaussian Graphical Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13283 |
| topics[0].field.id | https://openalex.org/fields/32 |
| topics[0].field.display_name | Psychology |
| topics[0].score | 0.9965000152587891 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3205 |
| topics[0].subfield.display_name | Experimental and Cognitive Psychology |
| topics[0].display_name | Mental Health Research Topics |
| topics[1].id | https://openalex.org/T10064 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9667999744415283 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3109 |
| topics[1].subfield.display_name | Statistical and Nonlinear Physics |
| topics[1].display_name | Complex Network Analysis Techniques |
| topics[2].id | https://openalex.org/T11303 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9667999744415283 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Bayesian Modeling and Causal Inference |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C177769412 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7674220204353333 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q278090 |
| concepts[0].display_name | Prior probability |
| concepts[1].id | https://openalex.org/C155846161 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7641705274581909 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1143367 |
| concepts[1].display_name | Graphical model |
| concepts[2].id | https://openalex.org/C34727166 |
| concepts[2].level | 3 |
| concepts[2].score | 0.7078841328620911 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q515375 |
| concepts[2].display_name | Cholesky decomposition |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6727299094200134 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C107673813 |
| concepts[4].level | 2 |
| concepts[4].score | 0.46969151496887207 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[4].display_name | Bayesian probability |
| concepts[5].id | https://openalex.org/C163716315 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4559437036514282 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[5].display_name | Gaussian |
| concepts[6].id | https://openalex.org/C11413529 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4034782648086548 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[6].display_name | Algorithm |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.37448686361312866 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3409973978996277 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C158693339 |
| concepts[9].level | 2 |
| concepts[9].score | 0.11577838659286499 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q190524 |
| concepts[9].display_name | Eigenvalues and eigenvectors |
| concepts[10].id | https://openalex.org/C121332964 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[10].display_name | Physics |
| concepts[11].id | https://openalex.org/C62520636 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[11].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/prior-probability |
| keywords[0].score | 0.7674220204353333 |
| keywords[0].display_name | Prior probability |
| keywords[1].id | https://openalex.org/keywords/graphical-model |
| keywords[1].score | 0.7641705274581909 |
| keywords[1].display_name | Graphical model |
| keywords[2].id | https://openalex.org/keywords/cholesky-decomposition |
| keywords[2].score | 0.7078841328620911 |
| keywords[2].display_name | Cholesky decomposition |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6727299094200134 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/bayesian-probability |
| keywords[4].score | 0.46969151496887207 |
| keywords[4].display_name | Bayesian probability |
| keywords[5].id | https://openalex.org/keywords/gaussian |
| keywords[5].score | 0.4559437036514282 |
| keywords[5].display_name | Gaussian |
| keywords[6].id | https://openalex.org/keywords/algorithm |
| keywords[6].score | 0.4034782648086548 |
| keywords[6].display_name | Algorithm |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.37448686361312866 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.3409973978996277 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/eigenvalues-and-eigenvectors |
| keywords[9].score | 0.11577838659286499 |
| keywords[9].display_name | Eigenvalues and eigenvectors |
| language | en |
| locations[0].id | doi:10.31234/osf.io/4s6fh |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://osf.io/4s6fh/download |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.31234/osf.io/4s6fh |
| locations[1].id | pmh:oai:share.osf.io:ea84e8d9-577c-4d35-8a46-46180dd2ceda |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400047 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Arabixiv (OSF Preprints) |
| locations[1].source.host_organization | https://openalex.org/I2799848540 |
| locations[1].source.host_organization_name | Center for Open Science |
| locations[1].source.host_organization_lineage | https://openalex.org/I2799848540 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Preprint |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://osf.io/4s6fh |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5044797587 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8929-3238 |
| authorships[0].author.display_name | Víthor Rosa Franco |
| authorships[0].countries | BR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I81009624 |
| authorships[0].affiliations[0].raw_affiliation_string | Postgraduate Program of Psychology São Francisco University |
| authorships[0].institutions[0].id | https://openalex.org/I81009624 |
| authorships[0].institutions[0].ror | https://ror.org/045ae7j03 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I81009624 |
| authorships[0].institutions[0].country_code | BR |
| authorships[0].institutions[0].display_name | Universidade São Francisco |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Víthor Rosa Franco |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Postgraduate Program of Psychology São Francisco University |
| authorships[1].author.id | https://openalex.org/A5088040032 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9313-3499 |
| authorships[1].author.display_name | Guilherme W. F. Barros |
| authorships[1].countries | SE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I90267481 |
| authorships[1].affiliations[0].raw_affiliation_string | Umeå School of Business Economics and Statistics (USBE) Umeå University |
| authorships[1].institutions[0].id | https://openalex.org/I90267481 |
| authorships[1].institutions[0].ror | https://ror.org/05kb8h459 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I90267481 |
| authorships[1].institutions[0].country_code | SE |
| authorships[1].institutions[0].display_name | Umeå University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Guilherme Wang Barros |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Umeå School of Business Economics and Statistics (USBE) Umeå University |
| authorships[2].author.id | https://openalex.org/A5016117300 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4029-6144 |
| authorships[2].author.display_name | Marcos Jiménez |
| authorships[2].countries | ES |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Social Psychology and Methodology |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I63634437 |
| authorships[2].affiliations[1].raw_affiliation_string | Universidad Autónoma de Madrid |
| authorships[2].institutions[0].id | https://openalex.org/I63634437 |
| authorships[2].institutions[0].ror | https://ror.org/01cby8j38 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I63634437 |
| authorships[2].institutions[0].country_code | ES |
| authorships[2].institutions[0].display_name | Universidad Autónoma de Madrid |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Marcos Jiménez |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Social Psychology and Methodology, Universidad Autónoma de Madrid |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://osf.io/4s6fh/download |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-10-02T00:00:00 |
| display_name | A Generalized Approach for Bayesian Gaussian Graphical Models |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13283 |
| primary_topic.field.id | https://openalex.org/fields/32 |
| primary_topic.field.display_name | Psychology |
| primary_topic.score | 0.9965000152587891 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3205 |
| primary_topic.subfield.display_name | Experimental and Cognitive Psychology |
| primary_topic.display_name | Mental Health Research Topics |
| related_works | https://openalex.org/W2086376786, https://openalex.org/W2100805585, https://openalex.org/W2135187896, https://openalex.org/W2015518264, https://openalex.org/W2562263695, https://openalex.org/W2162874930, https://openalex.org/W3160546271, https://openalex.org/W2147201983, https://openalex.org/W2795035211, https://openalex.org/W2168271748 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.31234/osf.io/4s6fh |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://osf.io/4s6fh/download |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.31234/osf.io/4s6fh |
| primary_location.id | doi:10.31234/osf.io/4s6fh |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://osf.io/4s6fh/download |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.31234/osf.io/4s6fh |
| publication_date | 2023-09-30 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2055808268, https://openalex.org/W6786744665, https://openalex.org/W1969902605, https://openalex.org/W6782413861, https://openalex.org/W3213773223, https://openalex.org/W6704572429, https://openalex.org/W2955867834, https://openalex.org/W2088162437, https://openalex.org/W4200198432, https://openalex.org/W2713925376, https://openalex.org/W3001747545, https://openalex.org/W6751870808, https://openalex.org/W3006037845, https://openalex.org/W6721195649, https://openalex.org/W2132555912, https://openalex.org/W2391304757, https://openalex.org/W2943428495, https://openalex.org/W2967775628, https://openalex.org/W6983367629, https://openalex.org/W6753332454, https://openalex.org/W3161590623, https://openalex.org/W2019837960, https://openalex.org/W4211128380, https://openalex.org/W6858008074, https://openalex.org/W2076214606, https://openalex.org/W3021144880, https://openalex.org/W2103419665, https://openalex.org/W6850323504, https://openalex.org/W3162766386, https://openalex.org/W3126123762, https://openalex.org/W3185747415, https://openalex.org/W1967502589, https://openalex.org/W6680760403, https://openalex.org/W1996467017, https://openalex.org/W2143891888, https://openalex.org/W7074552237, https://openalex.org/W2188583019, https://openalex.org/W6693365139, https://openalex.org/W3008680927, https://openalex.org/W2584430770, https://openalex.org/W2785607024, https://openalex.org/W2061901927, https://openalex.org/W3162433348, https://openalex.org/W3138406337, https://openalex.org/W3090988770, https://openalex.org/W6781611867, https://openalex.org/W6765177854, https://openalex.org/W3185851089, https://openalex.org/W2084045976, https://openalex.org/W2056757348, https://openalex.org/W3017924293, https://openalex.org/W2141637993, https://openalex.org/W4390105437, https://openalex.org/W2031809564, https://openalex.org/W2994031214, https://openalex.org/W4225598392, https://openalex.org/W4376876555, https://openalex.org/W4240430580, https://openalex.org/W1558108883, https://openalex.org/W2795897604, https://openalex.org/W4232639925, https://openalex.org/W3083170245, https://openalex.org/W3186241959, https://openalex.org/W4252543704, https://openalex.org/W2991376352, https://openalex.org/W2343912870, https://openalex.org/W2094081351, https://openalex.org/W1993746015, https://openalex.org/W2062751224, https://openalex.org/W4288640641, https://openalex.org/W2264366800, https://openalex.org/W2293626007, https://openalex.org/W3153760897, https://openalex.org/W4323075379, https://openalex.org/W4205325493, https://openalex.org/W2081195086, https://openalex.org/W4242611741, https://openalex.org/W1196702536, https://openalex.org/W2961079676, https://openalex.org/W3083417755, https://openalex.org/W4213278836, https://openalex.org/W1992535794, https://openalex.org/W2138329097, https://openalex.org/W2964033684, https://openalex.org/W4254147434, https://openalex.org/W68180256, https://openalex.org/W2033120023 |
| referenced_works_count | 87 |
| abstract_inverted_index.R | 149 |
| abstract_inverted_index.a | 66, 108, 136, 168, 190 |
| abstract_inverted_index.In | 61 |
| abstract_inverted_index.We | 144 |
| abstract_inverted_index.an | 92 |
| abstract_inverted_index.as | 122, 135, 138, 140 |
| abstract_inverted_index.be | 52 |
| abstract_inverted_index.by | 75 |
| abstract_inverted_index.do | 32 |
| abstract_inverted_index.in | 12, 189 |
| abstract_inverted_index.is | 104 |
| abstract_inverted_index.of | 7, 21, 47, 80, 87, 110, 115, 125, 162, 177, 183, 192 |
| abstract_inverted_index.on | 95, 106, 156 |
| abstract_inverted_index.or | 59 |
| abstract_inverted_index.to | 55, 69, 97, 141, 151 |
| abstract_inverted_index.we | 64 |
| abstract_inverted_index.(or | 118 |
| abstract_inverted_index.Our | 102 |
| abstract_inverted_index.and | 10, 15, 38, 159, 179 |
| abstract_inverted_index.any | 85, 131 |
| abstract_inverted_index.are | 5, 25, 165 |
| abstract_inverted_index.can | 129 |
| abstract_inverted_index.for | 36, 77 |
| abstract_inverted_index.how | 96 |
| abstract_inverted_index.may | 50 |
| abstract_inverted_index.new | 41, 67, 172 |
| abstract_inverted_index.not | 33, 51 |
| abstract_inverted_index.the | 22, 45, 78, 100, 111, 116, 123, 126, 147, 160, 163, 175, 181 |
| abstract_inverted_index.toy | 169 |
| abstract_inverted_index.LDL) | 119 |
| abstract_inverted_index.More | 43 |
| abstract_inverted_index.This | 171 |
| abstract_inverted_index.also | 90 |
| abstract_inverted_index.from | 27 |
| abstract_inverted_index.have | 145 |
| abstract_inverted_index.into | 40 |
| abstract_inverted_index.more | 187 |
| abstract_inverted_index.some | 20, 48, 153 |
| abstract_inverted_index.test | 56 |
| abstract_inverted_index.that | 31, 71 |
| abstract_inverted_index.them | 186 |
| abstract_inverted_index.this | 62, 73, 157 |
| abstract_inverted_index.type | 86 |
| abstract_inverted_index.well | 139 |
| abstract_inverted_index.with | 167 |
| abstract_inverted_index.BGGMs | 70 |
| abstract_inverted_index.about | 99 |
| abstract_inverted_index.allow | 35 |
| abstract_inverted_index.based | 105, 155 |
| abstract_inverted_index.gbggm | 148 |
| abstract_inverted_index.lower | 112 |
| abstract_inverted_index.range | 176 |
| abstract_inverted_index.tools | 6 |
| abstract_inverted_index.using | 107 |
| abstract_inverted_index.which | 128 |
| abstract_inverted_index.while | 89 |
| abstract_inverted_index.BGGMs, | 184 |
| abstract_inverted_index.Models | 3 |
| abstract_inverted_index.decide | 98 |
| abstract_inverted_index.easily | 34 |
| abstract_inverted_index.enough | 54 |
| abstract_inverted_index.having | 91 |
| abstract_inverted_index.making | 185 |
| abstract_inverted_index.matrix | 121 |
| abstract_inverted_index.models | 24, 49, 154 |
| abstract_inverted_index.paper, | 63 |
| abstract_inverted_index.prior, | 137 |
| abstract_inverted_index.priors | 58 |
| abstract_inverted_index.useful | 188 |
| abstract_inverted_index.values | 114 |
| abstract_inverted_index.(BGGMs) | 4 |
| abstract_inverted_index.between | 84 |
| abstract_inverted_index.derived | 26 |
| abstract_inverted_index.expands | 174 |
| abstract_inverted_index.growing | 8 |
| abstract_inverted_index.include | 142 |
| abstract_inverted_index.models, | 127 |
| abstract_inverted_index.models. | 42 |
| abstract_inverted_index.network | 13 |
| abstract_inverted_index.package | 150 |
| abstract_inverted_index.partial | 82 |
| abstract_inverted_index.present | 65 |
| abstract_inverted_index.priors. | 101 |
| abstract_inverted_index.receive | 130 |
| abstract_inverted_index.variety | 191 |
| abstract_inverted_index.Bayesian | 0 |
| abstract_inverted_index.Cholesky | 117 |
| abstract_inverted_index.Gaussian | 1 |
| abstract_inverted_index.However, | 19 |
| abstract_inverted_index.allowing | 76 |
| abstract_inverted_index.approach | 68, 94, 103, 164, 173 |
| abstract_inverted_index.diagonal | 113 |
| abstract_inverted_index.enhances | 180 |
| abstract_inverted_index.existing | 23 |
| abstract_inverted_index.flexible | 53 |
| abstract_inverted_index.interest | 11 |
| abstract_inverted_index.modeling | 29 |
| abstract_inverted_index.Graphical | 2 |
| abstract_inverted_index.approach, | 158 |
| abstract_inverted_index.contexts. | 193 |
| abstract_inverted_index.developed | 146 |
| abstract_inverted_index.different | 28, 57 |
| abstract_inverted_index.graphical | 17 |
| abstract_inverted_index.implement | 152 |
| abstract_inverted_index.intuistic | 93 |
| abstract_inverted_index.modeling. | 18 |
| abstract_inverted_index.overcomes | 72 |
| abstract_inverted_index.symmetric | 133 |
| abstract_inverted_index.variables | 88 |
| abstract_inverted_index.estimation | 79 |
| abstract_inverted_index.extensions | 37 |
| abstract_inverted_index.limitation | 74 |
| abstract_inverted_index.parameters | 124 |
| abstract_inverted_index.popularity | 9 |
| abstract_inverted_index.potentials | 161 |
| abstract_inverted_index.principles | 30 |
| abstract_inverted_index.flexibility | 182 |
| abstract_inverted_index.moderators. | 143 |
| abstract_inverted_index.regularized | 81 |
| abstract_inverted_index.simulation. | 170 |
| abstract_inverted_index.applications | 178 |
| abstract_inverted_index.combinations | 39 |
| abstract_inverted_index.correlations | 83 |
| abstract_inverted_index.demonstrated | 166 |
| abstract_inverted_index.distribution | 134 |
| abstract_inverted_index.likelihoods. | 60 |
| abstract_inverted_index.decomposition | 120 |
| abstract_inverted_index.probabilistic | 16 |
| abstract_inverted_index.psychometrics | 14 |
| abstract_inverted_index.specifically, | 44 |
| abstract_inverted_index.zero-centered | 132 |
| abstract_inverted_index.implementation | 46 |
| abstract_inverted_index.transformation | 109 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5044797587 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I81009624 |
| citation_normalized_percentile.value | 0.17967356 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |