A Generalized Structured Low-Rank Matrix Completion Algorithm for MR Image Recovery Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1811.10778
Recent theory of mapping an image into a structured low-rank Toeplitz or Hankel matrix has become an effective method to restore images. In this paper, we introduce a generalized structured low-rank algorithm to recover images from their undersampled Fourier coefficients using infimal convolution regularizations. The image is modeled as the superposition of a piecewise constant component and a piecewise linear component. The Fourier coefficients of each component satisfy an annihilation relation, which results in a structured Toeplitz matrix, respectively. We exploit the low-rank property of the matrices to formulate a combined regularized optimization problem. In order to solve the problem efficiently and to avoid the high memory demand resulting from the large-scale Toeplitz matrices, we introduce a fast and memory efficient algorithm based on the half-circulant approximation of the Toeplitz matrix. We demonstrate our algorithm in the context of single and multi-channel MR images recovery. Numerical experiments indicate that the proposed algorithm provides improved recovery performance over the state-of-the-art approaches.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1811.10778
- https://arxiv.org/pdf/1811.10778
- OA Status
- green
- References
- 29
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2949099302
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2949099302Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1811.10778Digital Object Identifier
- Title
-
A Generalized Structured Low-Rank Matrix Completion Algorithm for MR Image RecoveryWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-11-27Full publication date if available
- Authors
-
Yue Hu, Xiaohan Liu, Mathews JacobList of authors in order
- Landing page
-
https://arxiv.org/abs/1811.10778Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1811.10778Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1811.10778Direct OA link when available
- Concepts
-
Toeplitz matrix, Circulant matrix, Algorithm, Convolution (computer science), Rank (graph theory), Matrix (chemical analysis), Mathematics, Low-rank approximation, Piecewise, Mathematical optimization, Hankel matrix, Computer science, Artificial intelligence, Mathematical analysis, Pure mathematics, Materials science, Artificial neural network, Combinatorics, Composite materialTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
29Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2949099302 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1811.10778 |
| ids.doi | https://doi.org/10.48550/arxiv.1811.10778 |
| ids.mag | 2949099302 |
| ids.openalex | https://openalex.org/W2949099302 |
| fwci | |
| type | preprint |
| title | A Generalized Structured Low-Rank Matrix Completion Algorithm for MR Image Recovery |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10500 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2206 |
| topics[0].subfield.display_name | Computational Mechanics |
| topics[0].display_name | Sparse and Compressive Sensing Techniques |
| topics[1].id | https://openalex.org/T10688 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9984999895095825 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image and Signal Denoising Methods |
| topics[2].id | https://openalex.org/T10378 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9973999857902527 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Advanced MRI Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C147710293 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8954305648803711 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q849428 |
| concepts[0].display_name | Toeplitz matrix |
| concepts[1].id | https://openalex.org/C115973184 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6535731554031372 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q245457 |
| concepts[1].display_name | Circulant matrix |
| concepts[2].id | https://openalex.org/C11413529 |
| concepts[2].level | 1 |
| concepts[2].score | 0.611286997795105 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[2].display_name | Algorithm |
| concepts[3].id | https://openalex.org/C45347329 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5903193950653076 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5166604 |
| concepts[3].display_name | Convolution (computer science) |
| concepts[4].id | https://openalex.org/C164226766 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5830790996551514 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7293202 |
| concepts[4].display_name | Rank (graph theory) |
| concepts[5].id | https://openalex.org/C106487976 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5739470720291138 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q685816 |
| concepts[5].display_name | Matrix (chemical analysis) |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.5493993163108826 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C90199385 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5176454186439514 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q6692777 |
| concepts[7].display_name | Low-rank approximation |
| concepts[8].id | https://openalex.org/C164660894 |
| concepts[8].level | 2 |
| concepts[8].score | 0.45026424527168274 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2037833 |
| concepts[8].display_name | Piecewise |
| concepts[9].id | https://openalex.org/C126255220 |
| concepts[9].level | 1 |
| concepts[9].score | 0.39036691188812256 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[9].display_name | Mathematical optimization |
| concepts[10].id | https://openalex.org/C25023664 |
| concepts[10].level | 2 |
| concepts[10].score | 0.33318912982940674 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1575637 |
| concepts[10].display_name | Hankel matrix |
| concepts[11].id | https://openalex.org/C41008148 |
| concepts[11].level | 0 |
| concepts[11].score | 0.3269323408603668 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[11].display_name | Computer science |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.12357699871063232 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C134306372 |
| concepts[13].level | 1 |
| concepts[13].score | 0.11568072438240051 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[13].display_name | Mathematical analysis |
| concepts[14].id | https://openalex.org/C202444582 |
| concepts[14].level | 1 |
| concepts[14].score | 0.08512893319129944 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[14].display_name | Pure mathematics |
| concepts[15].id | https://openalex.org/C192562407 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[15].display_name | Materials science |
| concepts[16].id | https://openalex.org/C50644808 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[16].display_name | Artificial neural network |
| concepts[17].id | https://openalex.org/C114614502 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[17].display_name | Combinatorics |
| concepts[18].id | https://openalex.org/C159985019 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[18].display_name | Composite material |
| keywords[0].id | https://openalex.org/keywords/toeplitz-matrix |
| keywords[0].score | 0.8954305648803711 |
| keywords[0].display_name | Toeplitz matrix |
| keywords[1].id | https://openalex.org/keywords/circulant-matrix |
| keywords[1].score | 0.6535731554031372 |
| keywords[1].display_name | Circulant matrix |
| keywords[2].id | https://openalex.org/keywords/algorithm |
| keywords[2].score | 0.611286997795105 |
| keywords[2].display_name | Algorithm |
| keywords[3].id | https://openalex.org/keywords/convolution |
| keywords[3].score | 0.5903193950653076 |
| keywords[3].display_name | Convolution (computer science) |
| keywords[4].id | https://openalex.org/keywords/rank |
| keywords[4].score | 0.5830790996551514 |
| keywords[4].display_name | Rank (graph theory) |
| keywords[5].id | https://openalex.org/keywords/matrix |
| keywords[5].score | 0.5739470720291138 |
| keywords[5].display_name | Matrix (chemical analysis) |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.5493993163108826 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/low-rank-approximation |
| keywords[7].score | 0.5176454186439514 |
| keywords[7].display_name | Low-rank approximation |
| keywords[8].id | https://openalex.org/keywords/piecewise |
| keywords[8].score | 0.45026424527168274 |
| keywords[8].display_name | Piecewise |
| keywords[9].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[9].score | 0.39036691188812256 |
| keywords[9].display_name | Mathematical optimization |
| keywords[10].id | https://openalex.org/keywords/hankel-matrix |
| keywords[10].score | 0.33318912982940674 |
| keywords[10].display_name | Hankel matrix |
| keywords[11].id | https://openalex.org/keywords/computer-science |
| keywords[11].score | 0.3269323408603668 |
| keywords[11].display_name | Computer science |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.12357699871063232 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[13].score | 0.11568072438240051 |
| keywords[13].display_name | Mathematical analysis |
| keywords[14].id | https://openalex.org/keywords/pure-mathematics |
| keywords[14].score | 0.08512893319129944 |
| keywords[14].display_name | Pure mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1811.10778 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1811.10778 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1811.10778 |
| locations[1].id | doi:10.48550/arxiv.1811.10778 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1811.10778 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5087167168 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4648-611X |
| authorships[0].author.display_name | Yue Hu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yue Hu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100758661 |
| authorships[1].author.orcid | https://orcid.org/0009-0002-3093-2506 |
| authorships[1].author.display_name | Xiaohan Liu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xiaohan Liu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5072299998 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6196-3933 |
| authorships[2].author.display_name | Mathews Jacob |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Mathews Jacob |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1811.10778 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Generalized Structured Low-Rank Matrix Completion Algorithm for MR Image Recovery |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10500 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2206 |
| primary_topic.subfield.display_name | Computational Mechanics |
| primary_topic.display_name | Sparse and Compressive Sensing Techniques |
| related_works | https://openalex.org/W3177828492, https://openalex.org/W2034415022, https://openalex.org/W2335757200, https://openalex.org/W2149698301, https://openalex.org/W4388372565, https://openalex.org/W63525287, https://openalex.org/W2286689764, https://openalex.org/W2026406497, https://openalex.org/W4388372654, https://openalex.org/W1444802581 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1811.10778 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1811.10778 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1811.10778 |
| primary_location.id | pmh:oai:arXiv.org:1811.10778 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1811.10778 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1811.10778 |
| publication_date | 2018-11-27 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W2098662489, https://openalex.org/W1914211332, https://openalex.org/W2168903001, https://openalex.org/W2082675951, https://openalex.org/W2196426102, https://openalex.org/W2964321202, https://openalex.org/W1959070854, https://openalex.org/W2593158722, https://openalex.org/W2020111712, https://openalex.org/W2145962650, https://openalex.org/W2962903101, https://openalex.org/W2165142794, https://openalex.org/W2326045555, https://openalex.org/W2113030459, https://openalex.org/W1497904071, https://openalex.org/W2479702039, https://openalex.org/W1972150100, https://openalex.org/W1971056102, https://openalex.org/W3098518526, https://openalex.org/W2055834582, https://openalex.org/W2601784259, https://openalex.org/W2440567159, https://openalex.org/W2039939700, https://openalex.org/W2116581540, https://openalex.org/W2076833396, https://openalex.org/W2047163846, https://openalex.org/W2801822645, https://openalex.org/W2158537680, https://openalex.org/W2101675075 |
| referenced_works_count | 29 |
| abstract_inverted_index.a | 7, 27, 52, 57, 74, 89, 116 |
| abstract_inverted_index.In | 22, 94 |
| abstract_inverted_index.MR | 142 |
| abstract_inverted_index.We | 79, 131 |
| abstract_inverted_index.an | 4, 16, 68 |
| abstract_inverted_index.as | 48 |
| abstract_inverted_index.in | 73, 135 |
| abstract_inverted_index.is | 46 |
| abstract_inverted_index.of | 2, 51, 64, 84, 127, 138 |
| abstract_inverted_index.on | 123 |
| abstract_inverted_index.or | 11 |
| abstract_inverted_index.to | 19, 32, 87, 96, 102 |
| abstract_inverted_index.we | 25, 114 |
| abstract_inverted_index.The | 44, 61 |
| abstract_inverted_index.and | 56, 101, 118, 140 |
| abstract_inverted_index.has | 14 |
| abstract_inverted_index.our | 133 |
| abstract_inverted_index.the | 49, 81, 85, 98, 104, 110, 124, 128, 136, 149, 157 |
| abstract_inverted_index.each | 65 |
| abstract_inverted_index.fast | 117 |
| abstract_inverted_index.from | 35, 109 |
| abstract_inverted_index.high | 105 |
| abstract_inverted_index.into | 6 |
| abstract_inverted_index.over | 156 |
| abstract_inverted_index.that | 148 |
| abstract_inverted_index.this | 23 |
| abstract_inverted_index.avoid | 103 |
| abstract_inverted_index.based | 122 |
| abstract_inverted_index.image | 5, 45 |
| abstract_inverted_index.order | 95 |
| abstract_inverted_index.solve | 97 |
| abstract_inverted_index.their | 36 |
| abstract_inverted_index.using | 40 |
| abstract_inverted_index.which | 71 |
| abstract_inverted_index.Hankel | 12 |
| abstract_inverted_index.Recent | 0 |
| abstract_inverted_index.become | 15 |
| abstract_inverted_index.demand | 107 |
| abstract_inverted_index.images | 34, 143 |
| abstract_inverted_index.linear | 59 |
| abstract_inverted_index.matrix | 13 |
| abstract_inverted_index.memory | 106, 119 |
| abstract_inverted_index.method | 18 |
| abstract_inverted_index.paper, | 24 |
| abstract_inverted_index.single | 139 |
| abstract_inverted_index.theory | 1 |
| abstract_inverted_index.Fourier | 38, 62 |
| abstract_inverted_index.context | 137 |
| abstract_inverted_index.exploit | 80 |
| abstract_inverted_index.images. | 21 |
| abstract_inverted_index.infimal | 41 |
| abstract_inverted_index.mapping | 3 |
| abstract_inverted_index.matrix, | 77 |
| abstract_inverted_index.matrix. | 130 |
| abstract_inverted_index.modeled | 47 |
| abstract_inverted_index.problem | 99 |
| abstract_inverted_index.recover | 33 |
| abstract_inverted_index.restore | 20 |
| abstract_inverted_index.results | 72 |
| abstract_inverted_index.satisfy | 67 |
| abstract_inverted_index.Toeplitz | 10, 76, 112, 129 |
| abstract_inverted_index.combined | 90 |
| abstract_inverted_index.constant | 54 |
| abstract_inverted_index.improved | 153 |
| abstract_inverted_index.indicate | 147 |
| abstract_inverted_index.low-rank | 9, 30, 82 |
| abstract_inverted_index.matrices | 86 |
| abstract_inverted_index.problem. | 93 |
| abstract_inverted_index.property | 83 |
| abstract_inverted_index.proposed | 150 |
| abstract_inverted_index.provides | 152 |
| abstract_inverted_index.recovery | 154 |
| abstract_inverted_index.Numerical | 145 |
| abstract_inverted_index.algorithm | 31, 121, 134, 151 |
| abstract_inverted_index.component | 55, 66 |
| abstract_inverted_index.effective | 17 |
| abstract_inverted_index.efficient | 120 |
| abstract_inverted_index.formulate | 88 |
| abstract_inverted_index.introduce | 26, 115 |
| abstract_inverted_index.matrices, | 113 |
| abstract_inverted_index.piecewise | 53, 58 |
| abstract_inverted_index.recovery. | 144 |
| abstract_inverted_index.relation, | 70 |
| abstract_inverted_index.resulting | 108 |
| abstract_inverted_index.component. | 60 |
| abstract_inverted_index.structured | 8, 29, 75 |
| abstract_inverted_index.approaches. | 159 |
| abstract_inverted_index.convolution | 42 |
| abstract_inverted_index.demonstrate | 132 |
| abstract_inverted_index.efficiently | 100 |
| abstract_inverted_index.experiments | 146 |
| abstract_inverted_index.generalized | 28 |
| abstract_inverted_index.large-scale | 111 |
| abstract_inverted_index.performance | 155 |
| abstract_inverted_index.regularized | 91 |
| abstract_inverted_index.annihilation | 69 |
| abstract_inverted_index.coefficients | 39, 63 |
| abstract_inverted_index.optimization | 92 |
| abstract_inverted_index.undersampled | 37 |
| abstract_inverted_index.approximation | 126 |
| abstract_inverted_index.multi-channel | 141 |
| abstract_inverted_index.respectively. | 78 |
| abstract_inverted_index.superposition | 50 |
| abstract_inverted_index.half-circulant | 125 |
| abstract_inverted_index.regularizations. | 43 |
| abstract_inverted_index.state-of-the-art | 158 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |