A Generative Adversarial Imitation Learning-based Unit Commitment Strategy with Renewable Distributed Generators Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1088/1742-6596/3015/1/012010
With the integration of large-scale renewable distributed generators (RDGs), the uncertainties and complexity of the security-constrained unit commitment (SCUC) problem have increased significantly. Traditional model-driven methods struggle with computational speed and the need for high-precision modeling, while reinforcement learning (RL) approaches require manually defined reward functions. To address these issues, this paper proposes a novel SCUC strategy based on Generative Adversarial Imitation Learning (GAIL). The proposed strategy allows for the direct learning of the optimal SCUC policy under the guidance of an established expert system. To enhance the quality of the scheduling strategies generated by the generator network, this paper introduces the loss function from the proximal policy optimization (PPO) algorithm. The effectiveness of the proposed method is demonstrated through a simulation case study of a provincial power grid in China.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1088/1742-6596/3015/1/012010
- OA Status
- diamond
- References
- 11
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411062362
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411062362Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/1742-6596/3015/1/012010Digital Object Identifier
- Title
-
A Generative Adversarial Imitation Learning-based Unit Commitment Strategy with Renewable Distributed GeneratorsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-01Full publication date if available
- Authors
-
Honghu Cheng, Yongbo Li, Hailong Jiang, Sun Wenbing, Chao Wei, Jun DingList of authors in order
- Landing page
-
https://doi.org/10.1088/1742-6596/3015/1/012010Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1088/1742-6596/3015/1/012010Direct OA link when available
- Concepts
-
Adversarial system, Generative grammar, Imitation, Computer science, Unit (ring theory), Renewable energy, Artificial intelligence, Psychology, Engineering, Social psychology, Mathematics education, Electrical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
11Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411062362 |
|---|---|
| doi | https://doi.org/10.1088/1742-6596/3015/1/012010 |
| ids.doi | https://doi.org/10.1088/1742-6596/3015/1/012010 |
| ids.openalex | https://openalex.org/W4411062362 |
| fwci | 0.0 |
| type | article |
| title | A Generative Adversarial Imitation Learning-based Unit Commitment Strategy with Renewable Distributed Generators |
| biblio.issue | 1 |
| biblio.volume | 3015 |
| biblio.last_page | 012010 |
| biblio.first_page | 012010 |
| topics[0].id | https://openalex.org/T10603 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Smart Grid Energy Management |
| topics[1].id | https://openalex.org/T10424 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9958999752998352 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Electric Power System Optimization |
| topics[2].id | https://openalex.org/T12546 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9889000058174133 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2215 |
| topics[2].subfield.display_name | Building and Construction |
| topics[2].display_name | Smart Parking Systems Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C37736160 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7604544162750244 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1801315 |
| concepts[0].display_name | Adversarial system |
| concepts[1].id | https://openalex.org/C39890363 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7536766529083252 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[1].display_name | Generative grammar |
| concepts[2].id | https://openalex.org/C126388530 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7446278929710388 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1131737 |
| concepts[2].display_name | Imitation |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5171384215354919 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C122637931 |
| concepts[4].level | 2 |
| concepts[4].score | 0.44119754433631897 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q118084 |
| concepts[4].display_name | Unit (ring theory) |
| concepts[5].id | https://openalex.org/C188573790 |
| concepts[5].level | 2 |
| concepts[5].score | 0.42774009704589844 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12705 |
| concepts[5].display_name | Renewable energy |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.33772510290145874 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C15744967 |
| concepts[7].level | 0 |
| concepts[7].score | 0.22070196270942688 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[7].display_name | Psychology |
| concepts[8].id | https://openalex.org/C127413603 |
| concepts[8].level | 0 |
| concepts[8].score | 0.16397541761398315 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[8].display_name | Engineering |
| concepts[9].id | https://openalex.org/C77805123 |
| concepts[9].level | 1 |
| concepts[9].score | 0.13577130436897278 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q161272 |
| concepts[9].display_name | Social psychology |
| concepts[10].id | https://openalex.org/C145420912 |
| concepts[10].level | 1 |
| concepts[10].score | 0.06978309154510498 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q853077 |
| concepts[10].display_name | Mathematics education |
| concepts[11].id | https://openalex.org/C119599485 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[11].display_name | Electrical engineering |
| keywords[0].id | https://openalex.org/keywords/adversarial-system |
| keywords[0].score | 0.7604544162750244 |
| keywords[0].display_name | Adversarial system |
| keywords[1].id | https://openalex.org/keywords/generative-grammar |
| keywords[1].score | 0.7536766529083252 |
| keywords[1].display_name | Generative grammar |
| keywords[2].id | https://openalex.org/keywords/imitation |
| keywords[2].score | 0.7446278929710388 |
| keywords[2].display_name | Imitation |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5171384215354919 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/unit |
| keywords[4].score | 0.44119754433631897 |
| keywords[4].display_name | Unit (ring theory) |
| keywords[5].id | https://openalex.org/keywords/renewable-energy |
| keywords[5].score | 0.42774009704589844 |
| keywords[5].display_name | Renewable energy |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.33772510290145874 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/psychology |
| keywords[7].score | 0.22070196270942688 |
| keywords[7].display_name | Psychology |
| keywords[8].id | https://openalex.org/keywords/engineering |
| keywords[8].score | 0.16397541761398315 |
| keywords[8].display_name | Engineering |
| keywords[9].id | https://openalex.org/keywords/social-psychology |
| keywords[9].score | 0.13577130436897278 |
| keywords[9].display_name | Social psychology |
| keywords[10].id | https://openalex.org/keywords/mathematics-education |
| keywords[10].score | 0.06978309154510498 |
| keywords[10].display_name | Mathematics education |
| language | en |
| locations[0].id | doi:10.1088/1742-6596/3015/1/012010 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210187594 |
| locations[0].source.issn | 1742-6588, 1742-6596 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1742-6588 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Physics Conference Series |
| locations[0].source.host_organization | https://openalex.org/P4310320083 |
| locations[0].source.host_organization_name | IOP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Physics: Conference Series |
| locations[0].landing_page_url | https://doi.org/10.1088/1742-6596/3015/1/012010 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5088705208 |
| authorships[0].author.orcid | https://orcid.org/0009-0003-1086-8372 |
| authorships[0].author.display_name | Honghu Cheng |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Honghu Cheng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100665121 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2699-9951 |
| authorships[1].author.display_name | Yongbo Li |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yongbo Li |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5013072191 |
| authorships[2].author.orcid | https://orcid.org/0009-0007-5480-2120 |
| authorships[2].author.display_name | Hailong Jiang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hailong Jiang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101041768 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Sun Wenbing |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wenbing Sun |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5101419444 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3502-6951 |
| authorships[4].author.display_name | Chao Wei |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Chao Wei |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5101679536 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7762-889X |
| authorships[5].author.display_name | Jun Ding |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Xia Huang |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1088/1742-6596/3015/1/012010 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Generative Adversarial Imitation Learning-based Unit Commitment Strategy with Renewable Distributed Generators |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10603 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Smart Grid Energy Management |
| related_works | https://openalex.org/W4387497383, https://openalex.org/W3183948672, https://openalex.org/W3173606202, https://openalex.org/W3110381201, https://openalex.org/W2948807893, https://openalex.org/W2935909890, https://openalex.org/W2778153218, https://openalex.org/W2758277628, https://openalex.org/W1531601525, https://openalex.org/W2502115930 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1088/1742-6596/3015/1/012010 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210187594 |
| best_oa_location.source.issn | 1742-6588, 1742-6596 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1742-6588 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Physics Conference Series |
| best_oa_location.source.host_organization | https://openalex.org/P4310320083 |
| best_oa_location.source.host_organization_name | IOP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Physics: Conference Series |
| best_oa_location.landing_page_url | https://doi.org/10.1088/1742-6596/3015/1/012010 |
| primary_location.id | doi:10.1088/1742-6596/3015/1/012010 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210187594 |
| primary_location.source.issn | 1742-6588, 1742-6596 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1742-6588 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Physics Conference Series |
| primary_location.source.host_organization | https://openalex.org/P4310320083 |
| primary_location.source.host_organization_name | IOP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Physics: Conference Series |
| primary_location.landing_page_url | https://doi.org/10.1088/1742-6596/3015/1/012010 |
| publication_date | 2025-05-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4310826007, https://openalex.org/W6791760359, https://openalex.org/W3013827274, https://openalex.org/W3121097856, https://openalex.org/W2990480169, https://openalex.org/W4385325937, https://openalex.org/W2909246823, https://openalex.org/W4386590767, https://openalex.org/W6868692134, https://openalex.org/W3136152887, https://openalex.org/W4398765196 |
| referenced_works_count | 11 |
| abstract_inverted_index.a | 54, 121, 126 |
| abstract_inverted_index.To | 47, 86 |
| abstract_inverted_index.an | 82 |
| abstract_inverted_index.by | 95 |
| abstract_inverted_index.in | 130 |
| abstract_inverted_index.is | 118 |
| abstract_inverted_index.of | 4, 14, 73, 81, 90, 114, 125 |
| abstract_inverted_index.on | 59 |
| abstract_inverted_index.The | 65, 112 |
| abstract_inverted_index.and | 12, 31 |
| abstract_inverted_index.for | 34, 69 |
| abstract_inverted_index.the | 2, 10, 15, 32, 70, 74, 79, 88, 91, 96, 102, 106, 115 |
| abstract_inverted_index.(RL) | 40 |
| abstract_inverted_index.SCUC | 56, 76 |
| abstract_inverted_index.With | 1 |
| abstract_inverted_index.case | 123 |
| abstract_inverted_index.from | 105 |
| abstract_inverted_index.grid | 129 |
| abstract_inverted_index.have | 21 |
| abstract_inverted_index.loss | 103 |
| abstract_inverted_index.need | 33 |
| abstract_inverted_index.this | 51, 99 |
| abstract_inverted_index.unit | 17 |
| abstract_inverted_index.with | 28 |
| abstract_inverted_index.(PPO) | 110 |
| abstract_inverted_index.based | 58 |
| abstract_inverted_index.novel | 55 |
| abstract_inverted_index.paper | 52, 100 |
| abstract_inverted_index.power | 128 |
| abstract_inverted_index.speed | 30 |
| abstract_inverted_index.study | 124 |
| abstract_inverted_index.these | 49 |
| abstract_inverted_index.under | 78 |
| abstract_inverted_index.while | 37 |
| abstract_inverted_index.(SCUC) | 19 |
| abstract_inverted_index.China. | 131 |
| abstract_inverted_index.allows | 68 |
| abstract_inverted_index.direct | 71 |
| abstract_inverted_index.expert | 84 |
| abstract_inverted_index.method | 117 |
| abstract_inverted_index.policy | 77, 108 |
| abstract_inverted_index.reward | 45 |
| abstract_inverted_index.(GAIL). | 64 |
| abstract_inverted_index.(RDGs), | 9 |
| abstract_inverted_index.address | 48 |
| abstract_inverted_index.defined | 44 |
| abstract_inverted_index.enhance | 87 |
| abstract_inverted_index.issues, | 50 |
| abstract_inverted_index.methods | 26 |
| abstract_inverted_index.optimal | 75 |
| abstract_inverted_index.problem | 20 |
| abstract_inverted_index.quality | 89 |
| abstract_inverted_index.require | 42 |
| abstract_inverted_index.system. | 85 |
| abstract_inverted_index.through | 120 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Learning | 63 |
| abstract_inverted_index.function | 104 |
| abstract_inverted_index.guidance | 80 |
| abstract_inverted_index.learning | 39, 72 |
| abstract_inverted_index.manually | 43 |
| abstract_inverted_index.network, | 98 |
| abstract_inverted_index.proposed | 66, 116 |
| abstract_inverted_index.proposes | 53 |
| abstract_inverted_index.proximal | 107 |
| abstract_inverted_index.strategy | 57, 67 |
| abstract_inverted_index.struggle | 27 |
| abstract_inverted_index.Imitation | 62 |
| abstract_inverted_index.generated | 94 |
| abstract_inverted_index.generator | 97 |
| abstract_inverted_index.increased | 22 |
| abstract_inverted_index.modeling, | 36 |
| abstract_inverted_index.renewable | 6 |
| abstract_inverted_index.Generative | 60 |
| abstract_inverted_index.algorithm. | 111 |
| abstract_inverted_index.approaches | 41 |
| abstract_inverted_index.commitment | 18 |
| abstract_inverted_index.complexity | 13 |
| abstract_inverted_index.functions. | 46 |
| abstract_inverted_index.generators | 8 |
| abstract_inverted_index.introduces | 101 |
| abstract_inverted_index.provincial | 127 |
| abstract_inverted_index.scheduling | 92 |
| abstract_inverted_index.simulation | 122 |
| abstract_inverted_index.strategies | 93 |
| abstract_inverted_index.Adversarial | 61 |
| abstract_inverted_index.Traditional | 24 |
| abstract_inverted_index.distributed | 7 |
| abstract_inverted_index.established | 83 |
| abstract_inverted_index.integration | 3 |
| abstract_inverted_index.large-scale | 5 |
| abstract_inverted_index.demonstrated | 119 |
| abstract_inverted_index.model-driven | 25 |
| abstract_inverted_index.optimization | 109 |
| abstract_inverted_index.computational | 29 |
| abstract_inverted_index.effectiveness | 113 |
| abstract_inverted_index.reinforcement | 38 |
| abstract_inverted_index.uncertainties | 11 |
| abstract_inverted_index.high-precision | 35 |
| abstract_inverted_index.significantly. | 23 |
| abstract_inverted_index.security-constrained | 16 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.21527424 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |