A Goal-Oriented Reinforcement Learning-Based Path Planning Algorithm for Modular Self-Reconfigurable Satellites Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2505.01966
Modular self-reconfigurable satellites refer to satellite clusters composed of individual modular units capable of altering their configurations. The configuration changes enable the execution of diverse tasks and mission objectives. Existing path planning algorithms for reconfiguration often suffer from high computational complexity, poor generalization capability, and limited support for diverse target configurations. To address these challenges, this paper proposes a goal-oriented reinforcement learning-based path planning algorithm. This algorithm is the first to address the challenge that previous reinforcement learning methods failed to overcome, namely handling multiple target configurations. Moreover, techniques such as Hindsight Experience Replay and Invalid Action Masking are incorporated to overcome the significant obstacles posed by sparse rewards and invalid actions. Based on these designs, our model achieves a 95% and 73% success rate in reaching arbitrary target configurations in a modular satellite cluster composed of four and six units, respectively.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2505.01966
- https://arxiv.org/pdf/2505.01966
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415029156
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415029156Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2505.01966Digital Object Identifier
- Title
-
A Goal-Oriented Reinforcement Learning-Based Path Planning Algorithm for Modular Self-Reconfigurable SatellitesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-04Full publication date if available
- Authors
-
Bojian Liu, Dong Ye, Z. P. Yao, Zhaowei SunList of authors in order
- Landing page
-
https://arxiv.org/abs/2505.01966Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2505.01966Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2505.01966Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415029156 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2505.01966 |
| ids.doi | https://doi.org/10.48550/arxiv.2505.01966 |
| ids.openalex | https://openalex.org/W4415029156 |
| fwci | 0.0 |
| type | preprint |
| title | A Goal-Oriented Reinforcement Learning-Based Path Planning Algorithm for Modular Self-Reconfigurable Satellites |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11701 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9933000206947327 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Space Satellite Systems and Control |
| topics[1].id | https://openalex.org/T12042 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9891999959945679 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | Satellite Communication Systems |
| topics[2].id | https://openalex.org/T10586 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9872000217437744 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Robotic Path Planning Algorithms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2505.01966 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2505.01966 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2505.01966 |
| locations[1].id | doi:10.48550/arxiv.2505.01966 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2505.01966 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5053386770 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Bojian Liu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Liu, Bofei |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5051679284 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7400-7104 |
| authorships[1].author.display_name | Dong Ye |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ye, Dong |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5023197100 |
| authorships[2].author.orcid | https://orcid.org/0009-0004-9762-1520 |
| authorships[2].author.display_name | Z. P. Yao |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yao, Zunhao |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100778345 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4287-4940 |
| authorships[3].author.display_name | Zhaowei Sun |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Sun, Zhaowei |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2505.01966 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Goal-Oriented Reinforcement Learning-Based Path Planning Algorithm for Modular Self-Reconfigurable Satellites |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11701 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9933000206947327 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Space Satellite Systems and Control |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2505.01966 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2505.01966 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2505.01966 |
| primary_location.id | pmh:oai:arXiv.org:2505.01966 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2505.01966 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2505.01966 |
| publication_date | 2025-05-04 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 58, 119, 131 |
| abstract_inverted_index.To | 51 |
| abstract_inverted_index.as | 90 |
| abstract_inverted_index.by | 106 |
| abstract_inverted_index.in | 125, 130 |
| abstract_inverted_index.is | 67 |
| abstract_inverted_index.of | 8, 13, 23, 136 |
| abstract_inverted_index.on | 113 |
| abstract_inverted_index.to | 4, 70, 80, 100 |
| abstract_inverted_index.73% | 122 |
| abstract_inverted_index.95% | 120 |
| abstract_inverted_index.The | 17 |
| abstract_inverted_index.and | 26, 44, 94, 109, 121, 138 |
| abstract_inverted_index.are | 98 |
| abstract_inverted_index.for | 33, 47 |
| abstract_inverted_index.our | 116 |
| abstract_inverted_index.six | 139 |
| abstract_inverted_index.the | 21, 68, 72, 102 |
| abstract_inverted_index.This | 65 |
| abstract_inverted_index.four | 137 |
| abstract_inverted_index.from | 37 |
| abstract_inverted_index.high | 38 |
| abstract_inverted_index.path | 30, 62 |
| abstract_inverted_index.poor | 41 |
| abstract_inverted_index.rate | 124 |
| abstract_inverted_index.such | 89 |
| abstract_inverted_index.that | 74 |
| abstract_inverted_index.this | 55 |
| abstract_inverted_index.Based | 112 |
| abstract_inverted_index.first | 69 |
| abstract_inverted_index.model | 117 |
| abstract_inverted_index.often | 35 |
| abstract_inverted_index.paper | 56 |
| abstract_inverted_index.posed | 105 |
| abstract_inverted_index.refer | 3 |
| abstract_inverted_index.tasks | 25 |
| abstract_inverted_index.their | 15 |
| abstract_inverted_index.these | 53, 114 |
| abstract_inverted_index.units | 11 |
| abstract_inverted_index.Action | 96 |
| abstract_inverted_index.Replay | 93 |
| abstract_inverted_index.enable | 20 |
| abstract_inverted_index.failed | 79 |
| abstract_inverted_index.namely | 82 |
| abstract_inverted_index.sparse | 107 |
| abstract_inverted_index.suffer | 36 |
| abstract_inverted_index.target | 49, 85, 128 |
| abstract_inverted_index.units, | 140 |
| abstract_inverted_index.Invalid | 95 |
| abstract_inverted_index.Masking | 97 |
| abstract_inverted_index.Modular | 0 |
| abstract_inverted_index.address | 52, 71 |
| abstract_inverted_index.capable | 12 |
| abstract_inverted_index.changes | 19 |
| abstract_inverted_index.cluster | 134 |
| abstract_inverted_index.diverse | 24, 48 |
| abstract_inverted_index.invalid | 110 |
| abstract_inverted_index.limited | 45 |
| abstract_inverted_index.methods | 78 |
| abstract_inverted_index.mission | 27 |
| abstract_inverted_index.modular | 10, 132 |
| abstract_inverted_index.rewards | 108 |
| abstract_inverted_index.success | 123 |
| abstract_inverted_index.support | 46 |
| abstract_inverted_index.Existing | 29 |
| abstract_inverted_index.achieves | 118 |
| abstract_inverted_index.actions. | 111 |
| abstract_inverted_index.altering | 14 |
| abstract_inverted_index.clusters | 6 |
| abstract_inverted_index.composed | 7, 135 |
| abstract_inverted_index.designs, | 115 |
| abstract_inverted_index.handling | 83 |
| abstract_inverted_index.learning | 77 |
| abstract_inverted_index.multiple | 84 |
| abstract_inverted_index.overcome | 101 |
| abstract_inverted_index.planning | 31, 63 |
| abstract_inverted_index.previous | 75 |
| abstract_inverted_index.proposes | 57 |
| abstract_inverted_index.reaching | 126 |
| abstract_inverted_index.Hindsight | 91 |
| abstract_inverted_index.Moreover, | 87 |
| abstract_inverted_index.algorithm | 66 |
| abstract_inverted_index.arbitrary | 127 |
| abstract_inverted_index.challenge | 73 |
| abstract_inverted_index.execution | 22 |
| abstract_inverted_index.obstacles | 104 |
| abstract_inverted_index.overcome, | 81 |
| abstract_inverted_index.satellite | 5, 133 |
| abstract_inverted_index.Experience | 92 |
| abstract_inverted_index.algorithm. | 64 |
| abstract_inverted_index.algorithms | 32 |
| abstract_inverted_index.individual | 9 |
| abstract_inverted_index.satellites | 2 |
| abstract_inverted_index.techniques | 88 |
| abstract_inverted_index.capability, | 43 |
| abstract_inverted_index.challenges, | 54 |
| abstract_inverted_index.complexity, | 40 |
| abstract_inverted_index.objectives. | 28 |
| abstract_inverted_index.significant | 103 |
| abstract_inverted_index.incorporated | 99 |
| abstract_inverted_index.computational | 39 |
| abstract_inverted_index.configuration | 18 |
| abstract_inverted_index.goal-oriented | 59 |
| abstract_inverted_index.reinforcement | 60, 76 |
| abstract_inverted_index.respectively. | 141 |
| abstract_inverted_index.configurations | 129 |
| abstract_inverted_index.generalization | 42 |
| abstract_inverted_index.learning-based | 61 |
| abstract_inverted_index.configurations. | 16, 50, 86 |
| abstract_inverted_index.reconfiguration | 34 |
| abstract_inverted_index.self-reconfigurable | 1 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |