A GPU Simulation Tool for Training and Optimisation in 2D Digital X-Ray Imaging Article Swipe
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.1371/journal.pone.0141497
Conventional radiology is performed by means of digital detectors, with various types of technology and different performance in terms of efficiency and image quality. Following the arrival of a new digital detector in a radiology department, all the staff involved should adapt the procedure parameters to the properties of the detector, in order to achieve an optimal result in terms of correct diagnostic information and minimum radiation risks for the patient. The aim of this study was to develop and validate a software capable of simulating a digital X-ray imaging system, using graphics processing unit computing. All radiological image components were implemented in this application: an X-ray tube with primary beam, a virtual patient, noise, scatter radiation, a grid and a digital detector. Three different digital detectors (two digital radiography and a computed radiography systems) were implemented. In order to validate the software, we carried out a quantitative comparison of geometrical and anthropomorphic phantom simulated images with those acquired. In terms of average pixel values, the maximum differences were below 15%, while the noise values were in agreement with a maximum difference of 20%. The relative trends of contrast to noise ratio versus beam energy and intensity were well simulated. Total calculation times were below 3 seconds for clinical images with pixel size of actual dimensions less than 0.2 mm. The application proved to be efficient and realistic. Short calculation times and the accuracy of the results obtained make this software a useful tool for training operators and dose optimisation studies.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1371/journal.pone.0141497
- https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0141497&type=printable
- OA Status
- gold
- Cited By
- 13
- References
- 28
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2161287088
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2161287088Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1371/journal.pone.0141497Digital Object Identifier
- Title
-
A GPU Simulation Tool for Training and Optimisation in 2D Digital X-Ray ImagingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2015Year of publication
- Publication date
-
2015-11-06Full publication date if available
- Authors
-
E. Gallio, Osvaldo Rampado, Elena Gianaria, S Bianchi, R. RopoloList of authors in order
- Landing page
-
https://doi.org/10.1371/journal.pone.0141497Publisher landing page
- PDF URL
-
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0141497&type=printableDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0141497&type=printableDirect OA link when available
- Concepts
-
Detector, Imaging phantom, Flat panel detector, Computer science, Digital radiography, Software, Pixel, Digital imaging, Radiography, Image intensifier, Image quality, Noise (video), Graphics processing unit, Medical physics, Computed radiography, Digital image, Image processing, Artificial intelligence, Optics, Physics, Image (mathematics), Telecommunications, Operating system, Nuclear physics, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
13Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1, 2023: 1, 2021: 1, 2020: 1Per-year citation counts (last 5 years)
- References (count)
-
28Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2161287088 |
|---|---|
| doi | https://doi.org/10.1371/journal.pone.0141497 |
| ids.doi | https://doi.org/10.1371/journal.pone.0141497 |
| ids.mag | 2161287088 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/26545097 |
| ids.openalex | https://openalex.org/W2161287088 |
| fwci | 1.52931749 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D003196 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Computer Graphics |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D003201 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Computers |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D006801 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Humans |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D007091 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Image Processing, Computer-Assisted |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D008962 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Models, Theoretical |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D019047 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Phantoms, Imaging |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D011381 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Programming Languages |
| mesh[7].qualifier_ui | Q000379 |
| mesh[7].descriptor_ui | D011856 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | methods |
| mesh[7].descriptor_name | Radiographic Image Enhancement |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D012984 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Software |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D014965 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | X-Rays |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D003196 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Computer Graphics |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D003201 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Computers |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D006801 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Humans |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D007091 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Image Processing, Computer-Assisted |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D008962 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Models, Theoretical |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D019047 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Phantoms, Imaging |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D011381 |
| mesh[16].is_major_topic | True |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Programming Languages |
| mesh[17].qualifier_ui | Q000379 |
| mesh[17].descriptor_ui | D011856 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | methods |
| mesh[17].descriptor_name | Radiographic Image Enhancement |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D012984 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Software |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D014965 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | X-Rays |
| type | article |
| title | A GPU Simulation Tool for Training and Optimisation in 2D Digital X-Ray Imaging |
| biblio.issue | 11 |
| biblio.volume | 10 |
| biblio.last_page | e0141497 |
| biblio.first_page | e0141497 |
| topics[0].id | https://openalex.org/T11361 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2740 |
| topics[0].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[0].display_name | Digital Radiography and Breast Imaging |
| topics[1].id | https://openalex.org/T12386 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9998999834060669 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Advanced X-ray and CT Imaging |
| topics[2].id | https://openalex.org/T10522 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9997000098228455 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Medical Imaging Techniques and Applications |
| is_xpac | False |
| apc_list.value | 1805 |
| apc_list.currency | USD |
| apc_list.value_usd | 1805 |
| apc_paid.value | 1805 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1805 |
| concepts[0].id | https://openalex.org/C94915269 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7001689076423645 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1834857 |
| concepts[0].display_name | Detector |
| concepts[1].id | https://openalex.org/C104293457 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6939859986305237 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q28324852 |
| concepts[1].display_name | Imaging phantom |
| concepts[2].id | https://openalex.org/C94898600 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6449052095413208 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q241433 |
| concepts[2].display_name | Flat panel detector |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.643207848072052 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C2781305912 |
| concepts[4].level | 3 |
| concepts[4].score | 0.6063070297241211 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1225030 |
| concepts[4].display_name | Digital radiography |
| concepts[5].id | https://openalex.org/C2777904410 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6050718426704407 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7397 |
| concepts[5].display_name | Software |
| concepts[6].id | https://openalex.org/C160633673 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5611173510551453 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[6].display_name | Pixel |
| concepts[7].id | https://openalex.org/C112416745 |
| concepts[7].level | 5 |
| concepts[7].score | 0.5022251605987549 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q974213 |
| concepts[7].display_name | Digital imaging |
| concepts[8].id | https://openalex.org/C36454342 |
| concepts[8].level | 2 |
| concepts[8].score | 0.49987316131591797 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q245341 |
| concepts[8].display_name | Radiography |
| concepts[9].id | https://openalex.org/C17504453 |
| concepts[9].level | 2 |
| concepts[9].score | 0.49908971786499023 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q861692 |
| concepts[9].display_name | Image intensifier |
| concepts[10].id | https://openalex.org/C55020928 |
| concepts[10].level | 3 |
| concepts[10].score | 0.49487990140914917 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3813865 |
| concepts[10].display_name | Image quality |
| concepts[11].id | https://openalex.org/C99498987 |
| concepts[11].level | 3 |
| concepts[11].score | 0.48289966583251953 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[11].display_name | Noise (video) |
| concepts[12].id | https://openalex.org/C2779851693 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4213683605194092 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q183484 |
| concepts[12].display_name | Graphics processing unit |
| concepts[13].id | https://openalex.org/C19527891 |
| concepts[13].level | 1 |
| concepts[13].score | 0.4203251600265503 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1120908 |
| concepts[13].display_name | Medical physics |
| concepts[14].id | https://openalex.org/C134093067 |
| concepts[14].level | 4 |
| concepts[14].score | 0.41571030020713806 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2703926 |
| concepts[14].display_name | Computed radiography |
| concepts[15].id | https://openalex.org/C42781572 |
| concepts[15].level | 4 |
| concepts[15].score | 0.40820765495300293 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1250322 |
| concepts[15].display_name | Digital image |
| concepts[16].id | https://openalex.org/C9417928 |
| concepts[16].level | 3 |
| concepts[16].score | 0.3814792037010193 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1070689 |
| concepts[16].display_name | Image processing |
| concepts[17].id | https://openalex.org/C154945302 |
| concepts[17].level | 1 |
| concepts[17].score | 0.3593578040599823 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[17].display_name | Artificial intelligence |
| concepts[18].id | https://openalex.org/C120665830 |
| concepts[18].level | 1 |
| concepts[18].score | 0.31169790029525757 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[18].display_name | Optics |
| concepts[19].id | https://openalex.org/C121332964 |
| concepts[19].level | 0 |
| concepts[19].score | 0.30069786310195923 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[19].display_name | Physics |
| concepts[20].id | https://openalex.org/C115961682 |
| concepts[20].level | 2 |
| concepts[20].score | 0.11622041463851929 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[20].display_name | Image (mathematics) |
| concepts[21].id | https://openalex.org/C76155785 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[21].display_name | Telecommunications |
| concepts[22].id | https://openalex.org/C111919701 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[22].display_name | Operating system |
| concepts[23].id | https://openalex.org/C185544564 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q81197 |
| concepts[23].display_name | Nuclear physics |
| concepts[24].id | https://openalex.org/C199360897 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[24].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/detector |
| keywords[0].score | 0.7001689076423645 |
| keywords[0].display_name | Detector |
| keywords[1].id | https://openalex.org/keywords/imaging-phantom |
| keywords[1].score | 0.6939859986305237 |
| keywords[1].display_name | Imaging phantom |
| keywords[2].id | https://openalex.org/keywords/flat-panel-detector |
| keywords[2].score | 0.6449052095413208 |
| keywords[2].display_name | Flat panel detector |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.643207848072052 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/digital-radiography |
| keywords[4].score | 0.6063070297241211 |
| keywords[4].display_name | Digital radiography |
| keywords[5].id | https://openalex.org/keywords/software |
| keywords[5].score | 0.6050718426704407 |
| keywords[5].display_name | Software |
| keywords[6].id | https://openalex.org/keywords/pixel |
| keywords[6].score | 0.5611173510551453 |
| keywords[6].display_name | Pixel |
| keywords[7].id | https://openalex.org/keywords/digital-imaging |
| keywords[7].score | 0.5022251605987549 |
| keywords[7].display_name | Digital imaging |
| keywords[8].id | https://openalex.org/keywords/radiography |
| keywords[8].score | 0.49987316131591797 |
| keywords[8].display_name | Radiography |
| keywords[9].id | https://openalex.org/keywords/image-intensifier |
| keywords[9].score | 0.49908971786499023 |
| keywords[9].display_name | Image intensifier |
| keywords[10].id | https://openalex.org/keywords/image-quality |
| keywords[10].score | 0.49487990140914917 |
| keywords[10].display_name | Image quality |
| keywords[11].id | https://openalex.org/keywords/noise |
| keywords[11].score | 0.48289966583251953 |
| keywords[11].display_name | Noise (video) |
| keywords[12].id | https://openalex.org/keywords/graphics-processing-unit |
| keywords[12].score | 0.4213683605194092 |
| keywords[12].display_name | Graphics processing unit |
| keywords[13].id | https://openalex.org/keywords/medical-physics |
| keywords[13].score | 0.4203251600265503 |
| keywords[13].display_name | Medical physics |
| keywords[14].id | https://openalex.org/keywords/computed-radiography |
| keywords[14].score | 0.41571030020713806 |
| keywords[14].display_name | Computed radiography |
| keywords[15].id | https://openalex.org/keywords/digital-image |
| keywords[15].score | 0.40820765495300293 |
| keywords[15].display_name | Digital image |
| keywords[16].id | https://openalex.org/keywords/image-processing |
| keywords[16].score | 0.3814792037010193 |
| keywords[16].display_name | Image processing |
| keywords[17].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[17].score | 0.3593578040599823 |
| keywords[17].display_name | Artificial intelligence |
| keywords[18].id | https://openalex.org/keywords/optics |
| keywords[18].score | 0.31169790029525757 |
| keywords[18].display_name | Optics |
| keywords[19].id | https://openalex.org/keywords/physics |
| keywords[19].score | 0.30069786310195923 |
| keywords[19].display_name | Physics |
| keywords[20].id | https://openalex.org/keywords/image |
| keywords[20].score | 0.11622041463851929 |
| keywords[20].display_name | Image (mathematics) |
| language | en |
| locations[0].id | doi:10.1371/journal.pone.0141497 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S202381698 |
| locations[0].source.issn | 1932-6203 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1932-6203 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | PLoS ONE |
| locations[0].source.host_organization | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_name | Public Library of Science |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_lineage_names | Public Library of Science |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0141497&type=printable |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | PLOS ONE |
| locations[0].landing_page_url | https://doi.org/10.1371/journal.pone.0141497 |
| locations[1].id | pmid:26545097 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | PloS one |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/26545097 |
| locations[2].id | pmh:oai:RePEc:plo:pone00:0141497 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401271 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | RePEc: Research Papers in Economics |
| locations[2].source.host_organization | https://openalex.org/I77793887 |
| locations[2].source.host_organization_name | Federal Reserve Bank of St. Louis |
| locations[2].source.host_organization_lineage | https://openalex.org/I77793887 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0141497 |
| locations[3].id | pmh:oai:doaj.org/article:fe06dff6c61e40688f818b1a146bd419 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | cc-by-sa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | PLoS ONE, Vol 10, Iss 11, p e0141497 (2015) |
| locations[3].landing_page_url | https://doaj.org/article/fe06dff6c61e40688f818b1a146bd419 |
| locations[4].id | pmh:oai:europepmc.org:3616226 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306400806 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | Europe PMC (PubMed Central) |
| locations[4].source.host_organization | https://openalex.org/I1303153112 |
| locations[4].source.host_organization_name | European Bioinformatics Institute |
| locations[4].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/4636382 |
| locations[5].id | pmh:oai:iris.unito.it:2318/1527803 |
| locations[5].is_oa | True |
| locations[5].source.id | https://openalex.org/S4306400637 |
| locations[5].source.issn | |
| locations[5].source.type | repository |
| locations[5].source.is_oa | False |
| locations[5].source.issn_l | |
| locations[5].source.is_core | False |
| locations[5].source.is_in_doaj | False |
| locations[5].source.display_name | Institutional Research Information System University of Turin (University of Turin) |
| locations[5].source.host_organization | https://openalex.org/I55143463 |
| locations[5].source.host_organization_name | University of Turin |
| locations[5].source.host_organization_lineage | https://openalex.org/I55143463 |
| locations[5].license | other-oa |
| locations[5].pdf_url | |
| locations[5].version | submittedVersion |
| locations[5].raw_type | info:eu-repo/semantics/article |
| locations[5].license_id | https://openalex.org/licenses/other-oa |
| locations[5].is_accepted | False |
| locations[5].is_published | False |
| locations[5].raw_source_name | |
| locations[5].landing_page_url | http://hdl.handle.net/2318/1527803 |
| locations[6].id | pmh:oai:pubmedcentral.nih.gov:4636382 |
| locations[6].is_oa | True |
| locations[6].source.id | https://openalex.org/S2764455111 |
| locations[6].source.issn | |
| locations[6].source.type | repository |
| locations[6].source.is_oa | False |
| locations[6].source.issn_l | |
| locations[6].source.is_core | False |
| locations[6].source.is_in_doaj | False |
| locations[6].source.display_name | PubMed Central |
| locations[6].source.host_organization | https://openalex.org/I1299303238 |
| locations[6].source.host_organization_name | National Institutes of Health |
| locations[6].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[6].license | cc-by |
| locations[6].pdf_url | |
| locations[6].version | submittedVersion |
| locations[6].raw_type | Text |
| locations[6].license_id | https://openalex.org/licenses/cc-by |
| locations[6].is_accepted | False |
| locations[6].is_published | False |
| locations[6].raw_source_name | |
| locations[6].landing_page_url | http://doi.org/10.1371/journal.pone.0141497 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5077897111 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1388-061X |
| authorships[0].author.display_name | E. Gallio |
| authorships[0].countries | IT |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210086903 |
| authorships[0].affiliations[0].raw_affiliation_string | S.C. Fisica Sanitaria, A.O.U. Città della Salute e della Scienza, Turin, Italy |
| authorships[0].institutions[0].id | https://openalex.org/I4210086903 |
| authorships[0].institutions[0].ror | https://ror.org/001f7a930 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210086903 |
| authorships[0].institutions[0].country_code | IT |
| authorships[0].institutions[0].display_name | Azienda Ospedaliera Citta' della Salute e della Scienza di Torino |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Elena Gallio |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | S.C. Fisica Sanitaria, A.O.U. Città della Salute e della Scienza, Turin, Italy |
| authorships[1].author.id | https://openalex.org/A5004330052 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3078-5438 |
| authorships[1].author.display_name | Osvaldo Rampado |
| authorships[1].countries | IT |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210086903 |
| authorships[1].affiliations[0].raw_affiliation_string | S.C. Fisica Sanitaria, A.O.U. Città della Salute e della Scienza, Turin, Italy |
| authorships[1].institutions[0].id | https://openalex.org/I4210086903 |
| authorships[1].institutions[0].ror | https://ror.org/001f7a930 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210086903 |
| authorships[1].institutions[0].country_code | IT |
| authorships[1].institutions[0].display_name | Azienda Ospedaliera Citta' della Salute e della Scienza di Torino |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Osvaldo Rampado |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | S.C. Fisica Sanitaria, A.O.U. Città della Salute e della Scienza, Turin, Italy |
| authorships[2].author.id | https://openalex.org/A5088925019 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9448-551X |
| authorships[2].author.display_name | Elena Gianaria |
| authorships[2].countries | IT |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I55143463 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science, University of Turin,Turin, Italy |
| authorships[2].institutions[0].id | https://openalex.org/I55143463 |
| authorships[2].institutions[0].ror | https://ror.org/048tbm396 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I55143463 |
| authorships[2].institutions[0].country_code | IT |
| authorships[2].institutions[0].display_name | University of Turin |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Elena Gianaria |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Department of Computer Science, University of Turin,Turin, Italy |
| authorships[3].author.id | https://openalex.org/A5064274009 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7290-8489 |
| authorships[3].author.display_name | S Bianchi |
| authorships[3].countries | IT |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I55143463 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Surgical Sciences, University of Turin,Turin, Italy |
| authorships[3].institutions[0].id | https://openalex.org/I55143463 |
| authorships[3].institutions[0].ror | https://ror.org/048tbm396 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I55143463 |
| authorships[3].institutions[0].country_code | IT |
| authorships[3].institutions[0].display_name | University of Turin |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Silvio Diego Bianchi |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Department of Surgical Sciences, University of Turin,Turin, Italy |
| authorships[4].author.id | https://openalex.org/A5011310755 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | R. Ropolo |
| authorships[4].countries | IT |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210086903 |
| authorships[4].affiliations[0].raw_affiliation_string | S.C. Fisica Sanitaria, A.O.U. Città della Salute e della Scienza, Turin, Italy |
| authorships[4].institutions[0].id | https://openalex.org/I4210086903 |
| authorships[4].institutions[0].ror | https://ror.org/001f7a930 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210086903 |
| authorships[4].institutions[0].country_code | IT |
| authorships[4].institutions[0].display_name | Azienda Ospedaliera Citta' della Salute e della Scienza di Torino |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Roberto Ropolo |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | S.C. Fisica Sanitaria, A.O.U. Città della Salute e della Scienza, Turin, Italy |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0141497&type=printable |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A GPU Simulation Tool for Training and Optimisation in 2D Digital X-Ray Imaging |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11361 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2740 |
| primary_topic.subfield.display_name | Pulmonary and Respiratory Medicine |
| primary_topic.display_name | Digital Radiography and Breast Imaging |
| related_works | https://openalex.org/W2088219151, https://openalex.org/W2080750980, https://openalex.org/W2350753166, https://openalex.org/W2233942270, https://openalex.org/W2947636523, https://openalex.org/W2137476549, https://openalex.org/W3180795655, https://openalex.org/W2362198355, https://openalex.org/W2371904546, https://openalex.org/W2047828326 |
| cited_by_count | 13 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2020 |
| counts_by_year[4].cited_by_count | 1 |
| counts_by_year[5].year | 2019 |
| counts_by_year[5].cited_by_count | 2 |
| counts_by_year[6].year | 2018 |
| counts_by_year[6].cited_by_count | 2 |
| counts_by_year[7].year | 2017 |
| counts_by_year[7].cited_by_count | 2 |
| counts_by_year[8].year | 2016 |
| counts_by_year[8].cited_by_count | 1 |
| counts_by_year[9].year | 2015 |
| counts_by_year[9].cited_by_count | 1 |
| locations_count | 7 |
| best_oa_location.id | doi:10.1371/journal.pone.0141497 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S202381698 |
| best_oa_location.source.issn | 1932-6203 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1932-6203 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | PLoS ONE |
| best_oa_location.source.host_organization | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_name | Public Library of Science |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_lineage_names | Public Library of Science |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0141497&type=printable |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | PLOS ONE |
| best_oa_location.landing_page_url | https://doi.org/10.1371/journal.pone.0141497 |
| primary_location.id | doi:10.1371/journal.pone.0141497 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S202381698 |
| primary_location.source.issn | 1932-6203 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1932-6203 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | PLoS ONE |
| primary_location.source.host_organization | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_name | Public Library of Science |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_lineage_names | Public Library of Science |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0141497&type=printable |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | PLOS ONE |
| primary_location.landing_page_url | https://doi.org/10.1371/journal.pone.0141497 |
| publication_date | 2015-11-06 |
| publication_year | 2015 |
| referenced_works | https://openalex.org/W1973661178, https://openalex.org/W1977012448, https://openalex.org/W2067312448, https://openalex.org/W2099025623, https://openalex.org/W1994239163, https://openalex.org/W2051870180, https://openalex.org/W2133255533, https://openalex.org/W2038259880, https://openalex.org/W1979528439, https://openalex.org/W2003327790, https://openalex.org/W2034930021, https://openalex.org/W1964165544, https://openalex.org/W2050729642, https://openalex.org/W2072164635, https://openalex.org/W2055844022, https://openalex.org/W3138798301, https://openalex.org/W2119793535, https://openalex.org/W2012046524, https://openalex.org/W2046877085, https://openalex.org/W2019928265, https://openalex.org/W1965612527, https://openalex.org/W2031218807, https://openalex.org/W2091491567, https://openalex.org/W2011398297, https://openalex.org/W2045090637, https://openalex.org/W2061379937, https://openalex.org/W4285719527, https://openalex.org/W2028499920 |
| referenced_works_count | 28 |
| abstract_inverted_index.3 | 205 |
| abstract_inverted_index.a | 28, 33, 81, 86, 111, 117, 120, 131, 146, 179, 241 |
| abstract_inverted_index.In | 137, 159 |
| abstract_inverted_index.an | 55, 105 |
| abstract_inverted_index.be | 224 |
| abstract_inverted_index.by | 4 |
| abstract_inverted_index.in | 17, 32, 51, 58, 102, 176 |
| abstract_inverted_index.is | 2 |
| abstract_inverted_index.of | 6, 12, 19, 27, 48, 60, 73, 84, 149, 161, 182, 187, 213, 234 |
| abstract_inverted_index.to | 45, 53, 77, 139, 189, 223 |
| abstract_inverted_index.we | 143 |
| abstract_inverted_index.0.2 | 218 |
| abstract_inverted_index.All | 96 |
| abstract_inverted_index.The | 71, 184, 220 |
| abstract_inverted_index.aim | 72 |
| abstract_inverted_index.all | 36 |
| abstract_inverted_index.and | 14, 21, 64, 79, 119, 130, 151, 195, 226, 231, 247 |
| abstract_inverted_index.for | 68, 207, 244 |
| abstract_inverted_index.mm. | 219 |
| abstract_inverted_index.new | 29 |
| abstract_inverted_index.out | 145 |
| abstract_inverted_index.the | 25, 37, 42, 46, 49, 69, 141, 165, 172, 232, 235 |
| abstract_inverted_index.was | 76 |
| abstract_inverted_index.(two | 127 |
| abstract_inverted_index.15%, | 170 |
| abstract_inverted_index.20%. | 183 |
| abstract_inverted_index.beam | 193 |
| abstract_inverted_index.dose | 248 |
| abstract_inverted_index.grid | 118 |
| abstract_inverted_index.less | 216 |
| abstract_inverted_index.make | 238 |
| abstract_inverted_index.size | 212 |
| abstract_inverted_index.than | 217 |
| abstract_inverted_index.this | 74, 103, 239 |
| abstract_inverted_index.tool | 243 |
| abstract_inverted_index.tube | 107 |
| abstract_inverted_index.unit | 94 |
| abstract_inverted_index.well | 198 |
| abstract_inverted_index.were | 100, 135, 168, 175, 197, 203 |
| abstract_inverted_index.with | 9, 108, 156, 178, 210 |
| abstract_inverted_index.Short | 228 |
| abstract_inverted_index.Three | 123 |
| abstract_inverted_index.Total | 200 |
| abstract_inverted_index.X-ray | 88, 106 |
| abstract_inverted_index.adapt | 41 |
| abstract_inverted_index.beam, | 110 |
| abstract_inverted_index.below | 169, 204 |
| abstract_inverted_index.image | 22, 98 |
| abstract_inverted_index.means | 5 |
| abstract_inverted_index.noise | 173, 190 |
| abstract_inverted_index.order | 52, 138 |
| abstract_inverted_index.pixel | 163, 211 |
| abstract_inverted_index.ratio | 191 |
| abstract_inverted_index.risks | 67 |
| abstract_inverted_index.staff | 38 |
| abstract_inverted_index.study | 75 |
| abstract_inverted_index.terms | 18, 59, 160 |
| abstract_inverted_index.those | 157 |
| abstract_inverted_index.times | 202, 230 |
| abstract_inverted_index.types | 11 |
| abstract_inverted_index.using | 91 |
| abstract_inverted_index.while | 171 |
| abstract_inverted_index.actual | 214 |
| abstract_inverted_index.energy | 194 |
| abstract_inverted_index.images | 155, 209 |
| abstract_inverted_index.noise, | 114 |
| abstract_inverted_index.proved | 222 |
| abstract_inverted_index.result | 57 |
| abstract_inverted_index.should | 40 |
| abstract_inverted_index.trends | 186 |
| abstract_inverted_index.useful | 242 |
| abstract_inverted_index.values | 174 |
| abstract_inverted_index.versus | 192 |
| abstract_inverted_index.achieve | 54 |
| abstract_inverted_index.arrival | 26 |
| abstract_inverted_index.average | 162 |
| abstract_inverted_index.capable | 83 |
| abstract_inverted_index.carried | 144 |
| abstract_inverted_index.correct | 61 |
| abstract_inverted_index.develop | 78 |
| abstract_inverted_index.digital | 7, 30, 87, 121, 125, 128 |
| abstract_inverted_index.imaging | 89 |
| abstract_inverted_index.maximum | 166, 180 |
| abstract_inverted_index.minimum | 65 |
| abstract_inverted_index.optimal | 56 |
| abstract_inverted_index.phantom | 153 |
| abstract_inverted_index.primary | 109 |
| abstract_inverted_index.results | 236 |
| abstract_inverted_index.scatter | 115 |
| abstract_inverted_index.seconds | 206 |
| abstract_inverted_index.system, | 90 |
| abstract_inverted_index.values, | 164 |
| abstract_inverted_index.various | 10 |
| abstract_inverted_index.virtual | 112 |
| abstract_inverted_index.accuracy | 233 |
| abstract_inverted_index.clinical | 208 |
| abstract_inverted_index.computed | 132 |
| abstract_inverted_index.contrast | 188 |
| abstract_inverted_index.detector | 31 |
| abstract_inverted_index.graphics | 92 |
| abstract_inverted_index.involved | 39 |
| abstract_inverted_index.obtained | 237 |
| abstract_inverted_index.patient, | 113 |
| abstract_inverted_index.patient. | 70 |
| abstract_inverted_index.quality. | 23 |
| abstract_inverted_index.relative | 185 |
| abstract_inverted_index.software | 82, 240 |
| abstract_inverted_index.studies. | 250 |
| abstract_inverted_index.systems) | 134 |
| abstract_inverted_index.training | 245 |
| abstract_inverted_index.validate | 80, 140 |
| abstract_inverted_index.Following | 24 |
| abstract_inverted_index.acquired. | 158 |
| abstract_inverted_index.agreement | 177 |
| abstract_inverted_index.detector, | 50 |
| abstract_inverted_index.detector. | 122 |
| abstract_inverted_index.detectors | 126 |
| abstract_inverted_index.different | 15, 124 |
| abstract_inverted_index.efficient | 225 |
| abstract_inverted_index.intensity | 196 |
| abstract_inverted_index.operators | 246 |
| abstract_inverted_index.performed | 3 |
| abstract_inverted_index.procedure | 43 |
| abstract_inverted_index.radiation | 66 |
| abstract_inverted_index.radiology | 1, 34 |
| abstract_inverted_index.simulated | 154 |
| abstract_inverted_index.software, | 142 |
| abstract_inverted_index.comparison | 148 |
| abstract_inverted_index.components | 99 |
| abstract_inverted_index.computing. | 95 |
| abstract_inverted_index.detectors, | 8 |
| abstract_inverted_index.diagnostic | 62 |
| abstract_inverted_index.difference | 181 |
| abstract_inverted_index.dimensions | 215 |
| abstract_inverted_index.efficiency | 20 |
| abstract_inverted_index.parameters | 44 |
| abstract_inverted_index.processing | 93 |
| abstract_inverted_index.properties | 47 |
| abstract_inverted_index.radiation, | 116 |
| abstract_inverted_index.realistic. | 227 |
| abstract_inverted_index.simulated. | 199 |
| abstract_inverted_index.simulating | 85 |
| abstract_inverted_index.technology | 13 |
| abstract_inverted_index.application | 221 |
| abstract_inverted_index.calculation | 201, 229 |
| abstract_inverted_index.department, | 35 |
| abstract_inverted_index.differences | 167 |
| abstract_inverted_index.geometrical | 150 |
| abstract_inverted_index.implemented | 101 |
| abstract_inverted_index.information | 63 |
| abstract_inverted_index.performance | 16 |
| abstract_inverted_index.radiography | 129, 133 |
| abstract_inverted_index.Conventional | 0 |
| abstract_inverted_index.application: | 104 |
| abstract_inverted_index.implemented. | 136 |
| abstract_inverted_index.optimisation | 249 |
| abstract_inverted_index.quantitative | 147 |
| abstract_inverted_index.radiological | 97 |
| abstract_inverted_index.anthropomorphic | 152 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5077897111, https://openalex.org/A5064274009, https://openalex.org/A5011310755, https://openalex.org/A5004330052, https://openalex.org/A5088925019 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I4210086903, https://openalex.org/I55143463 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.7799999713897705 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.83011423 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |