A Granular Framework for Construction Material Price Forecasting: Econometric and Machine-Learning Approaches Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2512.09360
The persistent volatility of construction material prices poses significant risks to cost estimation, budgeting, and project delivery, underscoring the urgent need for granular and scalable forecasting methods. This study develops a forecasting framework that leverages the Construction Specifications Institute (CSI) MasterFormat as the target data structure, enabling predictions at the six-digit section level and supporting detailed cost projections across a wide spectrum of building materials. To enhance predictive accuracy, the framework integrates explanatory variables such as raw material prices, commodity indexes, and macroeconomic indicators. Four time-series models, Long Short-Term Memory (LSTM), Autoregressive Integrated Moving Average (ARIMA), Vector Error Correction Model (VECM), and Chronos-Bolt, were evaluated under both baseline configurations (using CSI data only) and extended versions with explanatory variables. Results demonstrate that incorporating explanatory variables significantly improves predictive performance across all models. Among the tested approaches, the LSTM model consistently achieved the highest accuracy, with RMSE values as low as 1.390 and MAPE values of 0.957, representing improvements of up to 59\% over the traditional statistical time-series model, ARIMA. Validation across multiple CSI divisions confirmed the framework's scalability, while Division 06 (Wood, Plastics, and Composites) is presented in detail as a demonstration case. This research offers a robust methodology that enables owners and contractors to improve budgeting practices and achieve more reliable cost estimation at the Definitive level.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2512.09360
- https://arxiv.org/pdf/2512.09360
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4417290348
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4417290348Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2512.09360Digital Object Identifier
- Title
-
A Granular Framework for Construction Material Price Forecasting: Econometric and Machine-Learning ApproachesWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-10Full publication date if available
- Authors
-
Bin Lyu, Qiaoyun Yin, Iris D. Tommelein, Hanyang Liu, Karnamohit Ranka, Karthik Yeluripati, Junzhe ShiList of authors in order
- Landing page
-
https://arxiv.org/abs/2512.09360Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2512.09360Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2512.09360Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4417290348 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2512.09360 |
| ids.doi | https://doi.org/10.48550/arxiv.2512.09360 |
| ids.openalex | https://openalex.org/W4417290348 |
| fwci | |
| type | preprint |
| title | A Granular Framework for Construction Material Price Forecasting: Econometric and Machine-Learning Approaches |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2512.09360 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2512.09360 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2512.09360 |
| locations[1].id | doi:10.48550/arxiv.2512.09360 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2512.09360 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5108122268 |
| authorships[0].author.orcid | https://orcid.org/0009-0005-1150-7637 |
| authorships[0].author.display_name | Bin Lyu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lyu, Boge |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5046538938 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6857-9237 |
| authorships[1].author.display_name | Qiaoyun Yin |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yin, Qianye |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5056377198 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9941-6596 |
| authorships[2].author.display_name | Iris D. Tommelein |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tommelein, Iris Denise |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101709857 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3435-5099 |
| authorships[3].author.display_name | Hanyang Liu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Liu, Hanyang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5120789764 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Karnamohit Ranka |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ranka, Karnamohit |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5055597853 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Karthik Yeluripati |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yeluripati, Karthik |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5078735183 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-2337-231X |
| authorships[6].author.display_name | Junzhe Shi |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Shi, Junzhe |
| authorships[6].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2512.09360 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-12T00:00:00 |
| display_name | A Granular Framework for Construction Material Price Forecasting: Econometric and Machine-Learning Approaches |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-13T09:18:59.789801 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2512.09360 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2512.09360 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2512.09360 |
| primary_location.id | pmh:oai:arXiv.org:2512.09360 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2512.09360 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2512.09360 |
| publication_date | 2025-12-10 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 30, 59, 190, 196 |
| abstract_inverted_index.06 | 180 |
| abstract_inverted_index.To | 65 |
| abstract_inverted_index.as | 41, 75, 147, 149, 189 |
| abstract_inverted_index.at | 48, 214 |
| abstract_inverted_index.in | 187 |
| abstract_inverted_index.is | 185 |
| abstract_inverted_index.of | 3, 62, 154, 158 |
| abstract_inverted_index.to | 10, 160, 204 |
| abstract_inverted_index.up | 159 |
| abstract_inverted_index.CSI | 110, 172 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.all | 130 |
| abstract_inverted_index.and | 14, 23, 53, 81, 101, 113, 151, 183, 202, 208 |
| abstract_inverted_index.for | 21 |
| abstract_inverted_index.low | 148 |
| abstract_inverted_index.raw | 76 |
| abstract_inverted_index.the | 18, 35, 42, 49, 69, 133, 136, 141, 163, 175, 215 |
| abstract_inverted_index.59\% | 161 |
| abstract_inverted_index.Four | 84 |
| abstract_inverted_index.LSTM | 137 |
| abstract_inverted_index.Long | 87 |
| abstract_inverted_index.MAPE | 152 |
| abstract_inverted_index.RMSE | 145 |
| abstract_inverted_index.This | 27, 193 |
| abstract_inverted_index.both | 106 |
| abstract_inverted_index.cost | 11, 56, 212 |
| abstract_inverted_index.data | 44, 111 |
| abstract_inverted_index.more | 210 |
| abstract_inverted_index.need | 20 |
| abstract_inverted_index.over | 162 |
| abstract_inverted_index.such | 74 |
| abstract_inverted_index.that | 33, 121, 199 |
| abstract_inverted_index.were | 103 |
| abstract_inverted_index.wide | 60 |
| abstract_inverted_index.with | 116, 144 |
| abstract_inverted_index.(CSI) | 39 |
| abstract_inverted_index.1.390 | 150 |
| abstract_inverted_index.Among | 132 |
| abstract_inverted_index.Error | 97 |
| abstract_inverted_index.Model | 99 |
| abstract_inverted_index.case. | 192 |
| abstract_inverted_index.level | 52 |
| abstract_inverted_index.model | 138 |
| abstract_inverted_index.only) | 112 |
| abstract_inverted_index.poses | 7 |
| abstract_inverted_index.risks | 9 |
| abstract_inverted_index.study | 28 |
| abstract_inverted_index.under | 105 |
| abstract_inverted_index.while | 178 |
| abstract_inverted_index.(Wood, | 181 |
| abstract_inverted_index.(using | 109 |
| abstract_inverted_index.0.957, | 155 |
| abstract_inverted_index.ARIMA. | 168 |
| abstract_inverted_index.Memory | 89 |
| abstract_inverted_index.Moving | 93 |
| abstract_inverted_index.Vector | 96 |
| abstract_inverted_index.across | 58, 129, 170 |
| abstract_inverted_index.detail | 188 |
| abstract_inverted_index.level. | 217 |
| abstract_inverted_index.model, | 167 |
| abstract_inverted_index.offers | 195 |
| abstract_inverted_index.owners | 201 |
| abstract_inverted_index.prices | 6 |
| abstract_inverted_index.robust | 197 |
| abstract_inverted_index.target | 43 |
| abstract_inverted_index.tested | 134 |
| abstract_inverted_index.urgent | 19 |
| abstract_inverted_index.values | 146, 153 |
| abstract_inverted_index.(LSTM), | 90 |
| abstract_inverted_index.(VECM), | 100 |
| abstract_inverted_index.Average | 94 |
| abstract_inverted_index.Results | 119 |
| abstract_inverted_index.achieve | 209 |
| abstract_inverted_index.enables | 200 |
| abstract_inverted_index.enhance | 66 |
| abstract_inverted_index.highest | 142 |
| abstract_inverted_index.improve | 205 |
| abstract_inverted_index.models, | 86 |
| abstract_inverted_index.models. | 131 |
| abstract_inverted_index.prices, | 78 |
| abstract_inverted_index.project | 15 |
| abstract_inverted_index.section | 51 |
| abstract_inverted_index.(ARIMA), | 95 |
| abstract_inverted_index.Division | 179 |
| abstract_inverted_index.achieved | 140 |
| abstract_inverted_index.baseline | 107 |
| abstract_inverted_index.building | 63 |
| abstract_inverted_index.detailed | 55 |
| abstract_inverted_index.develops | 29 |
| abstract_inverted_index.enabling | 46 |
| abstract_inverted_index.extended | 114 |
| abstract_inverted_index.granular | 22 |
| abstract_inverted_index.improves | 126 |
| abstract_inverted_index.indexes, | 80 |
| abstract_inverted_index.material | 5, 77 |
| abstract_inverted_index.methods. | 26 |
| abstract_inverted_index.multiple | 171 |
| abstract_inverted_index.reliable | 211 |
| abstract_inverted_index.research | 194 |
| abstract_inverted_index.scalable | 24 |
| abstract_inverted_index.spectrum | 61 |
| abstract_inverted_index.versions | 115 |
| abstract_inverted_index.Institute | 38 |
| abstract_inverted_index.Plastics, | 182 |
| abstract_inverted_index.accuracy, | 68, 143 |
| abstract_inverted_index.budgeting | 206 |
| abstract_inverted_index.commodity | 79 |
| abstract_inverted_index.confirmed | 174 |
| abstract_inverted_index.delivery, | 16 |
| abstract_inverted_index.divisions | 173 |
| abstract_inverted_index.evaluated | 104 |
| abstract_inverted_index.framework | 32, 70 |
| abstract_inverted_index.leverages | 34 |
| abstract_inverted_index.practices | 207 |
| abstract_inverted_index.presented | 186 |
| abstract_inverted_index.six-digit | 50 |
| abstract_inverted_index.variables | 73, 124 |
| abstract_inverted_index.Correction | 98 |
| abstract_inverted_index.Definitive | 216 |
| abstract_inverted_index.Integrated | 92 |
| abstract_inverted_index.Short-Term | 88 |
| abstract_inverted_index.Validation | 169 |
| abstract_inverted_index.budgeting, | 13 |
| abstract_inverted_index.estimation | 213 |
| abstract_inverted_index.integrates | 71 |
| abstract_inverted_index.materials. | 64 |
| abstract_inverted_index.persistent | 1 |
| abstract_inverted_index.predictive | 67, 127 |
| abstract_inverted_index.structure, | 45 |
| abstract_inverted_index.supporting | 54 |
| abstract_inverted_index.variables. | 118 |
| abstract_inverted_index.volatility | 2 |
| abstract_inverted_index.Composites) | 184 |
| abstract_inverted_index.approaches, | 135 |
| abstract_inverted_index.contractors | 203 |
| abstract_inverted_index.demonstrate | 120 |
| abstract_inverted_index.estimation, | 12 |
| abstract_inverted_index.explanatory | 72, 117, 123 |
| abstract_inverted_index.forecasting | 25, 31 |
| abstract_inverted_index.framework's | 176 |
| abstract_inverted_index.indicators. | 83 |
| abstract_inverted_index.methodology | 198 |
| abstract_inverted_index.performance | 128 |
| abstract_inverted_index.predictions | 47 |
| abstract_inverted_index.projections | 57 |
| abstract_inverted_index.significant | 8 |
| abstract_inverted_index.statistical | 165 |
| abstract_inverted_index.time-series | 85, 166 |
| abstract_inverted_index.traditional | 164 |
| abstract_inverted_index.Construction | 36 |
| abstract_inverted_index.MasterFormat | 40 |
| abstract_inverted_index.consistently | 139 |
| abstract_inverted_index.construction | 4 |
| abstract_inverted_index.improvements | 157 |
| abstract_inverted_index.representing | 156 |
| abstract_inverted_index.scalability, | 177 |
| abstract_inverted_index.underscoring | 17 |
| abstract_inverted_index.Chronos-Bolt, | 102 |
| abstract_inverted_index.demonstration | 191 |
| abstract_inverted_index.incorporating | 122 |
| abstract_inverted_index.macroeconomic | 82 |
| abstract_inverted_index.significantly | 125 |
| abstract_inverted_index.Autoregressive | 91 |
| abstract_inverted_index.Specifications | 37 |
| abstract_inverted_index.configurations | 108 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |