A Graph-based Context Learning Technique for Image Parsing Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1109/ijcnn54540.2023.10191800
The modern deep learning-based architectures have performed well for pixel-wise segmentation tasks. The consideration of context is of vital importance for generation of accurate semantic information. In this research, a deep learning-based image parsing framework is proposed that utilizes novel relation-aware context learning technique. The proposed technique explores the graph constructs from the training data to learn the co-occurring context associations of object category labels using the graph edge connections. The proposed graph-based context learning technique defines the scene specific relation-awareness among semantic object categories, e.g., the probability of sky, road and building to co-exist in a scene is high. The proposed image parsing architecture (including the novel graph-based context learning technique) is evaluated on the benchmark datasets. In addition, a comprehensive comparison with existing image parsing techniques is presented to establish the efficacy of the scene-graph generation. The in-depth investigation of graph generation is presented to demonstrate the improvement in pixel-wise labeling.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/ijcnn54540.2023.10191800
- OA Status
- green
- References
- 62
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4385482776
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4385482776Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/ijcnn54540.2023.10191800Digital Object Identifier
- Title
-
A Graph-based Context Learning Technique for Image ParsingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-18Full publication date if available
- Authors
-
Basim Azam, Brijesh VermaList of authors in order
- Landing page
-
https://doi.org/10.1109/ijcnn54540.2023.10191800Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://hdl.handle.net/10072/427562Direct OA link when available
- Concepts
-
Computer science, Parsing, Scene graph, Artificial intelligence, Graph, Relation (database), Pixel, Segmentation, Image segmentation, Dependency grammar, Context model, Deep learning, Pattern recognition (psychology), Natural language processing, Machine learning, Computer vision, Object (grammar), Theoretical computer science, Data mining, Rendering (computer graphics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
62Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4385482776 |
|---|---|
| doi | https://doi.org/10.1109/ijcnn54540.2023.10191800 |
| ids.doi | https://doi.org/10.1109/ijcnn54540.2023.10191800 |
| ids.openalex | https://openalex.org/W4385482776 |
| fwci | 0.0 |
| type | article |
| title | A Graph-based Context Learning Technique for Image Parsing |
| awards[0].id | https://openalex.org/G2374712507 |
| awards[0].funder_id | https://openalex.org/F4320334704 |
| awards[0].display_name | |
| awards[0].funder_award_id | DP200102252 |
| awards[0].funder_display_name | Australian Research Council |
| biblio.issue | |
| biblio.volume | 40 |
| biblio.last_page | 10 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9986000061035156 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T11714 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9983000159263611 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Multimodal Machine Learning Applications |
| topics[2].id | https://openalex.org/T10627 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9976000189781189 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Image and Video Retrieval Techniques |
| funders[0].id | https://openalex.org/F4320334704 |
| funders[0].ror | https://ror.org/05mmh0f86 |
| funders[0].display_name | Australian Research Council |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8177512884140015 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C186644900 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7677491903305054 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q194152 |
| concepts[1].display_name | Parsing |
| concepts[2].id | https://openalex.org/C179372163 |
| concepts[2].level | 3 |
| concepts[2].score | 0.7564101219177246 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1406181 |
| concepts[2].display_name | Scene graph |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6585320234298706 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C132525143 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6074221134185791 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[4].display_name | Graph |
| concepts[5].id | https://openalex.org/C25343380 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5159169435501099 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q277521 |
| concepts[5].display_name | Relation (database) |
| concepts[6].id | https://openalex.org/C160633673 |
| concepts[6].level | 2 |
| concepts[6].score | 0.48584601283073425 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[6].display_name | Pixel |
| concepts[7].id | https://openalex.org/C89600930 |
| concepts[7].level | 2 |
| concepts[7].score | 0.47349151968955994 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[7].display_name | Segmentation |
| concepts[8].id | https://openalex.org/C124504099 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4692283570766449 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[8].display_name | Image segmentation |
| concepts[9].id | https://openalex.org/C164883195 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4599681496620178 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q674834 |
| concepts[9].display_name | Dependency grammar |
| concepts[10].id | https://openalex.org/C183322885 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4519776701927185 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q17007702 |
| concepts[10].display_name | Context model |
| concepts[11].id | https://openalex.org/C108583219 |
| concepts[11].level | 2 |
| concepts[11].score | 0.423850417137146 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[11].display_name | Deep learning |
| concepts[12].id | https://openalex.org/C153180895 |
| concepts[12].level | 2 |
| concepts[12].score | 0.3963058888912201 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[12].display_name | Pattern recognition (psychology) |
| concepts[13].id | https://openalex.org/C204321447 |
| concepts[13].level | 1 |
| concepts[13].score | 0.39265406131744385 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[13].display_name | Natural language processing |
| concepts[14].id | https://openalex.org/C119857082 |
| concepts[14].level | 1 |
| concepts[14].score | 0.3643403649330139 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[14].display_name | Machine learning |
| concepts[15].id | https://openalex.org/C31972630 |
| concepts[15].level | 1 |
| concepts[15].score | 0.3541027903556824 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[15].display_name | Computer vision |
| concepts[16].id | https://openalex.org/C2781238097 |
| concepts[16].level | 2 |
| concepts[16].score | 0.325604110956192 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[16].display_name | Object (grammar) |
| concepts[17].id | https://openalex.org/C80444323 |
| concepts[17].level | 1 |
| concepts[17].score | 0.2397800087928772 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[17].display_name | Theoretical computer science |
| concepts[18].id | https://openalex.org/C124101348 |
| concepts[18].level | 1 |
| concepts[18].score | 0.18831557035446167 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[18].display_name | Data mining |
| concepts[19].id | https://openalex.org/C205711294 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q176953 |
| concepts[19].display_name | Rendering (computer graphics) |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8177512884140015 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/parsing |
| keywords[1].score | 0.7677491903305054 |
| keywords[1].display_name | Parsing |
| keywords[2].id | https://openalex.org/keywords/scene-graph |
| keywords[2].score | 0.7564101219177246 |
| keywords[2].display_name | Scene graph |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6585320234298706 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/graph |
| keywords[4].score | 0.6074221134185791 |
| keywords[4].display_name | Graph |
| keywords[5].id | https://openalex.org/keywords/relation |
| keywords[5].score | 0.5159169435501099 |
| keywords[5].display_name | Relation (database) |
| keywords[6].id | https://openalex.org/keywords/pixel |
| keywords[6].score | 0.48584601283073425 |
| keywords[6].display_name | Pixel |
| keywords[7].id | https://openalex.org/keywords/segmentation |
| keywords[7].score | 0.47349151968955994 |
| keywords[7].display_name | Segmentation |
| keywords[8].id | https://openalex.org/keywords/image-segmentation |
| keywords[8].score | 0.4692283570766449 |
| keywords[8].display_name | Image segmentation |
| keywords[9].id | https://openalex.org/keywords/dependency-grammar |
| keywords[9].score | 0.4599681496620178 |
| keywords[9].display_name | Dependency grammar |
| keywords[10].id | https://openalex.org/keywords/context-model |
| keywords[10].score | 0.4519776701927185 |
| keywords[10].display_name | Context model |
| keywords[11].id | https://openalex.org/keywords/deep-learning |
| keywords[11].score | 0.423850417137146 |
| keywords[11].display_name | Deep learning |
| keywords[12].id | https://openalex.org/keywords/pattern-recognition |
| keywords[12].score | 0.3963058888912201 |
| keywords[12].display_name | Pattern recognition (psychology) |
| keywords[13].id | https://openalex.org/keywords/natural-language-processing |
| keywords[13].score | 0.39265406131744385 |
| keywords[13].display_name | Natural language processing |
| keywords[14].id | https://openalex.org/keywords/machine-learning |
| keywords[14].score | 0.3643403649330139 |
| keywords[14].display_name | Machine learning |
| keywords[15].id | https://openalex.org/keywords/computer-vision |
| keywords[15].score | 0.3541027903556824 |
| keywords[15].display_name | Computer vision |
| keywords[16].id | https://openalex.org/keywords/object |
| keywords[16].score | 0.325604110956192 |
| keywords[16].display_name | Object (grammar) |
| keywords[17].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[17].score | 0.2397800087928772 |
| keywords[17].display_name | Theoretical computer science |
| keywords[18].id | https://openalex.org/keywords/data-mining |
| keywords[18].score | 0.18831557035446167 |
| keywords[18].display_name | Data mining |
| language | en |
| locations[0].id | doi:10.1109/ijcnn54540.2023.10191800 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2023 International Joint Conference on Neural Networks (IJCNN) |
| locations[0].landing_page_url | https://doi.org/10.1109/ijcnn54540.2023.10191800 |
| locations[1].id | pmh:oai:research-repository.griffith.edu.au:10072/427562 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402548 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Griffith Research Online (Griffith University, Queensland, Australia) |
| locations[1].source.host_organization | https://openalex.org/I11701301 |
| locations[1].source.host_organization_name | Griffith University |
| locations[1].source.host_organization_lineage | https://openalex.org/I11701301 |
| locations[1].license | other-oa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Conference output |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://hdl.handle.net/10072/427562 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5002895693 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3367-6467 |
| authorships[0].author.display_name | Basim Azam |
| authorships[0].countries | AU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I11701301 |
| authorships[0].affiliations[0].raw_affiliation_string | Institute for Integrated and Intelligent Systems, School of Infomration and Communication Technology, Griffith University, Brisbane, Australia |
| authorships[0].institutions[0].id | https://openalex.org/I11701301 |
| authorships[0].institutions[0].ror | https://ror.org/02sc3r913 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I11701301 |
| authorships[0].institutions[0].country_code | AU |
| authorships[0].institutions[0].display_name | Griffith University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Basim Azam |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Institute for Integrated and Intelligent Systems, School of Infomration and Communication Technology, Griffith University, Brisbane, Australia |
| authorships[1].author.id | https://openalex.org/A5026528338 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4618-0479 |
| authorships[1].author.display_name | Brijesh Verma |
| authorships[1].countries | AU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I11701301 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute for Integrated and Intelligent Systems, School of Infomration and Communication Technology, Griffith University, Brisbane, Australia |
| authorships[1].institutions[0].id | https://openalex.org/I11701301 |
| authorships[1].institutions[0].ror | https://ror.org/02sc3r913 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I11701301 |
| authorships[1].institutions[0].country_code | AU |
| authorships[1].institutions[0].display_name | Griffith University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Brijesh Verma |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Institute for Integrated and Intelligent Systems, School of Infomration and Communication Technology, Griffith University, Brisbane, Australia |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://hdl.handle.net/10072/427562 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Graph-based Context Learning Technique for Image Parsing |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9986000061035156 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W2251084681, https://openalex.org/W287510790, https://openalex.org/W2098784136, https://openalex.org/W2968543375, https://openalex.org/W2571817549, https://openalex.org/W1541975828, https://openalex.org/W2888625260, https://openalex.org/W3035970863, https://openalex.org/W4288558800, https://openalex.org/W2250525544 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:research-repository.griffith.edu.au:10072/427562 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402548 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Griffith Research Online (Griffith University, Queensland, Australia) |
| best_oa_location.source.host_organization | https://openalex.org/I11701301 |
| best_oa_location.source.host_organization_name | Griffith University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I11701301 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Conference output |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://hdl.handle.net/10072/427562 |
| primary_location.id | doi:10.1109/ijcnn54540.2023.10191800 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2023 International Joint Conference on Neural Networks (IJCNN) |
| primary_location.landing_page_url | https://doi.org/10.1109/ijcnn54540.2023.10191800 |
| publication_date | 2023-06-18 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2970543709, https://openalex.org/W2119943055, https://openalex.org/W2395611524, https://openalex.org/W2319083191, https://openalex.org/W6729856380, https://openalex.org/W2022508996, https://openalex.org/W2320281308, https://openalex.org/W3132455321, https://openalex.org/W2901249224, https://openalex.org/W6638480814, https://openalex.org/W2963881378, https://openalex.org/W2981689412, https://openalex.org/W3047385447, https://openalex.org/W2028277005, https://openalex.org/W2017313218, https://openalex.org/W1581592866, https://openalex.org/W2412782625, https://openalex.org/W1915480574, https://openalex.org/W3159837173, https://openalex.org/W3022184340, https://openalex.org/W3011933327, https://openalex.org/W3194677016, https://openalex.org/W3121675078, https://openalex.org/W2962730651, https://openalex.org/W3085685449, https://openalex.org/W2102605133, https://openalex.org/W2561196672, https://openalex.org/W2737258237, https://openalex.org/W3092223688, https://openalex.org/W3125803554, https://openalex.org/W3036385345, https://openalex.org/W3159640305, https://openalex.org/W2142834259, https://openalex.org/W2963166928, https://openalex.org/W4200237038, https://openalex.org/W6696085341, https://openalex.org/W2753588254, https://openalex.org/W2461677039, https://openalex.org/W3082097505, https://openalex.org/W4210476769, https://openalex.org/W2037227137, https://openalex.org/W3177791215, https://openalex.org/W6666899075, https://openalex.org/W2737885667, https://openalex.org/W6717372056, https://openalex.org/W2911016673, https://openalex.org/W181701252, https://openalex.org/W3165745140, https://openalex.org/W4244914727, https://openalex.org/W2965391153, https://openalex.org/W1610707153, https://openalex.org/W6754123467, https://openalex.org/W4293406525, https://openalex.org/W2963840672, https://openalex.org/W1817277359, https://openalex.org/W2886934227, https://openalex.org/W2150609397, https://openalex.org/W2554423077, https://openalex.org/W4225608379, https://openalex.org/W2066813062, https://openalex.org/W4226283079, https://openalex.org/W3196670469 |
| referenced_works_count | 62 |
| abstract_inverted_index.a | 29, 96, 120 |
| abstract_inverted_index.In | 26, 118 |
| abstract_inverted_index.in | 95, 150 |
| abstract_inverted_index.is | 16, 35, 98, 112, 128, 144 |
| abstract_inverted_index.of | 14, 17, 22, 61, 88, 134, 141 |
| abstract_inverted_index.on | 114 |
| abstract_inverted_index.to | 55, 93, 130, 146 |
| abstract_inverted_index.The | 0, 12, 44, 70, 100, 138 |
| abstract_inverted_index.and | 91 |
| abstract_inverted_index.for | 8, 20 |
| abstract_inverted_index.the | 48, 52, 57, 66, 77, 86, 106, 115, 132, 135, 148 |
| abstract_inverted_index.data | 54 |
| abstract_inverted_index.deep | 2, 30 |
| abstract_inverted_index.edge | 68 |
| abstract_inverted_index.from | 51 |
| abstract_inverted_index.have | 5 |
| abstract_inverted_index.road | 90 |
| abstract_inverted_index.sky, | 89 |
| abstract_inverted_index.that | 37 |
| abstract_inverted_index.this | 27 |
| abstract_inverted_index.well | 7 |
| abstract_inverted_index.with | 123 |
| abstract_inverted_index.among | 81 |
| abstract_inverted_index.e.g., | 85 |
| abstract_inverted_index.graph | 49, 67, 142 |
| abstract_inverted_index.high. | 99 |
| abstract_inverted_index.image | 32, 102, 125 |
| abstract_inverted_index.learn | 56 |
| abstract_inverted_index.novel | 39, 107 |
| abstract_inverted_index.scene | 78, 97 |
| abstract_inverted_index.using | 65 |
| abstract_inverted_index.vital | 18 |
| abstract_inverted_index.labels | 64 |
| abstract_inverted_index.modern | 1 |
| abstract_inverted_index.object | 62, 83 |
| abstract_inverted_index.tasks. | 11 |
| abstract_inverted_index.context | 15, 41, 59, 73, 109 |
| abstract_inverted_index.defines | 76 |
| abstract_inverted_index.parsing | 33, 103, 126 |
| abstract_inverted_index.accurate | 23 |
| abstract_inverted_index.building | 92 |
| abstract_inverted_index.category | 63 |
| abstract_inverted_index.co-exist | 94 |
| abstract_inverted_index.efficacy | 133 |
| abstract_inverted_index.existing | 124 |
| abstract_inverted_index.explores | 47 |
| abstract_inverted_index.in-depth | 139 |
| abstract_inverted_index.learning | 42, 74, 110 |
| abstract_inverted_index.proposed | 36, 45, 71, 101 |
| abstract_inverted_index.semantic | 24, 82 |
| abstract_inverted_index.specific | 79 |
| abstract_inverted_index.training | 53 |
| abstract_inverted_index.utilizes | 38 |
| abstract_inverted_index.addition, | 119 |
| abstract_inverted_index.benchmark | 116 |
| abstract_inverted_index.datasets. | 117 |
| abstract_inverted_index.establish | 131 |
| abstract_inverted_index.evaluated | 113 |
| abstract_inverted_index.framework | 34 |
| abstract_inverted_index.labeling. | 152 |
| abstract_inverted_index.performed | 6 |
| abstract_inverted_index.presented | 129, 145 |
| abstract_inverted_index.research, | 28 |
| abstract_inverted_index.technique | 46, 75 |
| abstract_inverted_index.(including | 105 |
| abstract_inverted_index.comparison | 122 |
| abstract_inverted_index.constructs | 50 |
| abstract_inverted_index.generation | 21, 143 |
| abstract_inverted_index.importance | 19 |
| abstract_inverted_index.pixel-wise | 9, 151 |
| abstract_inverted_index.technique) | 111 |
| abstract_inverted_index.technique. | 43 |
| abstract_inverted_index.techniques | 127 |
| abstract_inverted_index.categories, | 84 |
| abstract_inverted_index.demonstrate | 147 |
| abstract_inverted_index.generation. | 137 |
| abstract_inverted_index.graph-based | 72, 108 |
| abstract_inverted_index.improvement | 149 |
| abstract_inverted_index.probability | 87 |
| abstract_inverted_index.scene-graph | 136 |
| abstract_inverted_index.architecture | 104 |
| abstract_inverted_index.associations | 60 |
| abstract_inverted_index.co-occurring | 58 |
| abstract_inverted_index.connections. | 69 |
| abstract_inverted_index.information. | 25 |
| abstract_inverted_index.segmentation | 10 |
| abstract_inverted_index.architectures | 4 |
| abstract_inverted_index.comprehensive | 121 |
| abstract_inverted_index.consideration | 13 |
| abstract_inverted_index.investigation | 140 |
| abstract_inverted_index.learning-based | 3, 31 |
| abstract_inverted_index.relation-aware | 40 |
| abstract_inverted_index.relation-awareness | 80 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.5299999713897705 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.0981019 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |