A Greedy Method for Constructing Minimal Multiconlitron Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1109/access.2019.2957516
Multiconlitron is a general theoretical framework for constructing piecewise linear classifier. However, it contains a relatively large number of linear functions, resulting in complicated model structure and poor generalization ability. Learning to prune redundant or excessive components may be a very necessary progression. We propose a novel greedy method, i.e., greedy support multiconlitron algorithm (GreSMA) to simplify the multiconlitron. In GreSMA, a procedure of greedy selection is first used. It generates the initial linear boundaries, each of which can separate maximum number of training samples under the current iteration. In this way, a minimal set of decision functions is established. In the second stage of GreSMA, a procedure of boundary adjustment is designed to retrain the classification boundary between convex hulls of local subsets, instead of individual samples. Thus, the adjusted boundary will fit the data more closely. Experiments on both synthetic and real-world datasets show that GreSMA can produce minimal multiconlitron with better performance. It meets the criteria of “Occam’s razor”, since simpler model can help prevent over-fitting and improve the generalization ability. More significantly, the proposed method does not contain parameters that depend on the datasets or make assumptions of the underlying statistical distributions of the samples. Therefore, it should be regarded as an attractive advancement of piecewise linear learning in the general framework of multiconlitron.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2019.2957516
- https://ieeexplore.ieee.org/ielx7/6287639/8600701/08922614.pdf
- OA Status
- gold
- Cited By
- 1
- References
- 34
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2993928980
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2993928980Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2019.2957516Digital Object Identifier
- Title
-
A Greedy Method for Constructing Minimal MulticonlitronWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-01-01Full publication date if available
- Authors
-
Qiangkui Leng, Y. Liu, Xu Zhao, L. Zhang, Yin QinList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2019.2957516Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/6287639/8600701/08922614.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/6287639/8600701/08922614.pdfDirect OA link when available
- Concepts
-
Computer science, Greedy algorithm, AlgorithmTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 1Per-year citation counts (last 5 years)
- References (count)
-
34Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2993928980 |
|---|---|
| doi | https://doi.org/10.1109/access.2019.2957516 |
| ids.doi | https://doi.org/10.1109/access.2019.2957516 |
| ids.mag | 2993928980 |
| ids.openalex | https://openalex.org/W2993928980 |
| fwci | 0.10688576 |
| type | article |
| title | A Greedy Method for Constructing Minimal Multiconlitron |
| awards[0].id | https://openalex.org/G5166986054 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2019-ZD-0493 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G4792787400 |
| awards[1].funder_id | https://openalex.org/F4320327557 |
| awards[1].display_name | |
| awards[1].funder_award_id | 19BTQ028 |
| awards[1].funder_display_name | National Office for Philosophy and Social Sciences |
| awards[2].id | https://openalex.org/G2624738137 |
| awards[2].funder_id | https://openalex.org/F4320321001 |
| awards[2].display_name | |
| awards[2].funder_award_id | 20180550525 |
| awards[2].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | |
| biblio.volume | 7 |
| biblio.last_page | 174672 |
| biblio.first_page | 174662 |
| topics[0].id | https://openalex.org/T10901 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9810000061988831 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Data Compression Techniques |
| topics[1].id | https://openalex.org/T10320 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.98089998960495 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Neural Networks and Applications |
| topics[2].id | https://openalex.org/T10057 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9750000238418579 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Face and Expression Recognition |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320327557 |
| funders[1].ror | https://ror.org/04m0ms912 |
| funders[1].display_name | National Office for Philosophy and Social Sciences |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6544800996780396 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C51823790 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5047944784164429 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q504353 |
| concepts[1].display_name | Greedy algorithm |
| concepts[2].id | https://openalex.org/C11413529 |
| concepts[2].level | 1 |
| concepts[2].score | 0.31669527292251587 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[2].display_name | Algorithm |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6544800996780396 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/greedy-algorithm |
| keywords[1].score | 0.5047944784164429 |
| keywords[1].display_name | Greedy algorithm |
| keywords[2].id | https://openalex.org/keywords/algorithm |
| keywords[2].score | 0.31669527292251587 |
| keywords[2].display_name | Algorithm |
| language | en |
| locations[0].id | doi:10.1109/access.2019.2957516 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8600701/08922614.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2019.2957516 |
| locations[1].id | pmh:oai:doaj.org/article:25e6ccc17b0b483c9b45ea85b9ad23e3 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 7, Pp 174662-174672 (2019) |
| locations[1].landing_page_url | https://doaj.org/article/25e6ccc17b0b483c9b45ea85b9ad23e3 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5081900154 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6788-3344 |
| authorships[0].author.display_name | Qiangkui Leng |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I97009856 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Information Science and Technology, Bohai University, Jinzhou, China |
| authorships[0].institutions[0].id | https://openalex.org/I97009856 |
| authorships[0].institutions[0].ror | https://ror.org/01kdzej58 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I97009856 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Bohai University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Q. Leng |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Information Science and Technology, Bohai University, Jinzhou, China |
| authorships[1].author.id | https://openalex.org/A5070416981 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Y. Liu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I97009856 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Information Science and Technology, Bohai University, Jinzhou, China |
| authorships[1].institutions[0].id | https://openalex.org/I97009856 |
| authorships[1].institutions[0].ror | https://ror.org/01kdzej58 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I97009856 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Bohai University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Y. Liu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Information Science and Technology, Bohai University, Jinzhou, China |
| authorships[2].author.id | https://openalex.org/A5100596546 |
| authorships[2].author.orcid | https://orcid.org/0009-0007-3587-230X |
| authorships[2].author.display_name | Xu Zhao |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I97009856 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Information Science and Technology, Bohai University, Jinzhou, China |
| authorships[2].institutions[0].id | https://openalex.org/I97009856 |
| authorships[2].institutions[0].ror | https://ror.org/01kdzej58 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I97009856 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Bohai University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | X. Zhao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Information Science and Technology, Bohai University, Jinzhou, China |
| authorships[3].author.id | https://openalex.org/A5114065823 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | L. Zhang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I97009856 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Information Science and Technology, Bohai University, Jinzhou, China |
| authorships[3].institutions[0].id | https://openalex.org/I97009856 |
| authorships[3].institutions[0].ror | https://ror.org/01kdzej58 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I97009856 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Bohai University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | L. Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Information Science and Technology, Bohai University, Jinzhou, China |
| authorships[4].author.id | https://openalex.org/A5112125893 |
| authorships[4].author.orcid | https://orcid.org/0009-0000-8333-5110 |
| authorships[4].author.display_name | Yin Qin |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I97009856 |
| authorships[4].affiliations[0].raw_affiliation_string | College of Engineering, Bohai University, Jinzhou, China |
| authorships[4].institutions[0].id | https://openalex.org/I97009856 |
| authorships[4].institutions[0].ror | https://ror.org/01kdzej58 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I97009856 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Bohai University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Y. Qin |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | College of Engineering, Bohai University, Jinzhou, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/6287639/8600701/08922614.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Greedy Method for Constructing Minimal Multiconlitron |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10901 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9810000061988831 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Data Compression Techniques |
| related_works | https://openalex.org/W4387497383, https://openalex.org/W3183948672, https://openalex.org/W3173606202, https://openalex.org/W3110381201, https://openalex.org/W2948807893, https://openalex.org/W2899084033, https://openalex.org/W2778153218, https://openalex.org/W2758277628, https://openalex.org/W2748952813, https://openalex.org/W1531601525 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2019.2957516 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8600701/08922614.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2019.2957516 |
| primary_location.id | doi:10.1109/access.2019.2957516 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8600701/08922614.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2019.2957516 |
| publication_date | 2019-01-01 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2167139585, https://openalex.org/W2014610539, https://openalex.org/W2000752850, https://openalex.org/W2003124853, https://openalex.org/W2096114681, https://openalex.org/W1986422783, https://openalex.org/W1974124783, https://openalex.org/W2019893342, https://openalex.org/W6638962698, https://openalex.org/W2035779538, https://openalex.org/W2059102279, https://openalex.org/W6637406579, https://openalex.org/W2896498151, https://openalex.org/W2088227332, https://openalex.org/W2002689747, https://openalex.org/W2337893107, https://openalex.org/W2172000360, https://openalex.org/W2297651528, https://openalex.org/W2148245374, https://openalex.org/W2510087677, https://openalex.org/W2075425072, https://openalex.org/W2014455653, https://openalex.org/W2089020872, https://openalex.org/W2106907649, https://openalex.org/W2166282318, https://openalex.org/W6636174462, https://openalex.org/W2145454557, https://openalex.org/W2030506963, https://openalex.org/W2170756173, https://openalex.org/W1848138967, https://openalex.org/W1676661688, https://openalex.org/W3120421331, https://openalex.org/W1604585277, https://openalex.org/W3120740533 |
| referenced_works_count | 34 |
| abstract_inverted_index.a | 2, 14, 39, 45, 61, 92, 106 |
| abstract_inverted_index.In | 59, 89, 100 |
| abstract_inverted_index.It | 69, 155 |
| abstract_inverted_index.We | 43 |
| abstract_inverted_index.an | 205 |
| abstract_inverted_index.as | 204 |
| abstract_inverted_index.be | 38, 202 |
| abstract_inverted_index.in | 22, 212 |
| abstract_inverted_index.is | 1, 66, 98, 111 |
| abstract_inverted_index.it | 12, 200 |
| abstract_inverted_index.of | 18, 63, 76, 82, 95, 104, 108, 121, 125, 159, 191, 196, 208, 216 |
| abstract_inverted_index.on | 139, 185 |
| abstract_inverted_index.or | 34, 188 |
| abstract_inverted_index.to | 31, 55, 113 |
| abstract_inverted_index.and | 26, 142, 169 |
| abstract_inverted_index.can | 78, 148, 165 |
| abstract_inverted_index.fit | 133 |
| abstract_inverted_index.for | 6 |
| abstract_inverted_index.may | 37 |
| abstract_inverted_index.not | 180 |
| abstract_inverted_index.set | 94 |
| abstract_inverted_index.the | 57, 71, 86, 101, 115, 129, 134, 157, 171, 176, 186, 192, 197, 213 |
| abstract_inverted_index.More | 174 |
| abstract_inverted_index.both | 140 |
| abstract_inverted_index.data | 135 |
| abstract_inverted_index.does | 179 |
| abstract_inverted_index.each | 75 |
| abstract_inverted_index.help | 166 |
| abstract_inverted_index.make | 189 |
| abstract_inverted_index.more | 136 |
| abstract_inverted_index.poor | 27 |
| abstract_inverted_index.show | 145 |
| abstract_inverted_index.that | 146, 183 |
| abstract_inverted_index.this | 90 |
| abstract_inverted_index.very | 40 |
| abstract_inverted_index.way, | 91 |
| abstract_inverted_index.will | 132 |
| abstract_inverted_index.with | 152 |
| abstract_inverted_index.Thus, | 128 |
| abstract_inverted_index.first | 67 |
| abstract_inverted_index.hulls | 120 |
| abstract_inverted_index.i.e., | 49 |
| abstract_inverted_index.large | 16 |
| abstract_inverted_index.local | 122 |
| abstract_inverted_index.meets | 156 |
| abstract_inverted_index.model | 24, 164 |
| abstract_inverted_index.novel | 46 |
| abstract_inverted_index.prune | 32 |
| abstract_inverted_index.since | 162 |
| abstract_inverted_index.stage | 103 |
| abstract_inverted_index.under | 85 |
| abstract_inverted_index.used. | 68 |
| abstract_inverted_index.which | 77 |
| abstract_inverted_index.GreSMA | 147 |
| abstract_inverted_index.better | 153 |
| abstract_inverted_index.convex | 119 |
| abstract_inverted_index.depend | 184 |
| abstract_inverted_index.greedy | 47, 50, 64 |
| abstract_inverted_index.linear | 9, 19, 73, 210 |
| abstract_inverted_index.method | 178 |
| abstract_inverted_index.number | 17, 81 |
| abstract_inverted_index.second | 102 |
| abstract_inverted_index.should | 201 |
| abstract_inverted_index.GreSMA, | 60, 105 |
| abstract_inverted_index.between | 118 |
| abstract_inverted_index.contain | 181 |
| abstract_inverted_index.current | 87 |
| abstract_inverted_index.general | 3, 214 |
| abstract_inverted_index.improve | 170 |
| abstract_inverted_index.initial | 72 |
| abstract_inverted_index.instead | 124 |
| abstract_inverted_index.maximum | 80 |
| abstract_inverted_index.method, | 48 |
| abstract_inverted_index.minimal | 93, 150 |
| abstract_inverted_index.prevent | 167 |
| abstract_inverted_index.produce | 149 |
| abstract_inverted_index.propose | 44 |
| abstract_inverted_index.retrain | 114 |
| abstract_inverted_index.samples | 84 |
| abstract_inverted_index.simpler | 163 |
| abstract_inverted_index.support | 51 |
| abstract_inverted_index.(GreSMA) | 54 |
| abstract_inverted_index.However, | 11 |
| abstract_inverted_index.Learning | 30 |
| abstract_inverted_index.ability. | 29, 173 |
| abstract_inverted_index.adjusted | 130 |
| abstract_inverted_index.boundary | 109, 117, 131 |
| abstract_inverted_index.closely. | 137 |
| abstract_inverted_index.contains | 13 |
| abstract_inverted_index.criteria | 158 |
| abstract_inverted_index.datasets | 144, 187 |
| abstract_inverted_index.decision | 96 |
| abstract_inverted_index.designed | 112 |
| abstract_inverted_index.learning | 211 |
| abstract_inverted_index.proposed | 177 |
| abstract_inverted_index.regarded | 203 |
| abstract_inverted_index.samples. | 127, 198 |
| abstract_inverted_index.separate | 79 |
| abstract_inverted_index.simplify | 56 |
| abstract_inverted_index.subsets, | 123 |
| abstract_inverted_index.training | 83 |
| abstract_inverted_index.algorithm | 53 |
| abstract_inverted_index.excessive | 35 |
| abstract_inverted_index.framework | 5, 215 |
| abstract_inverted_index.functions | 97 |
| abstract_inverted_index.generates | 70 |
| abstract_inverted_index.necessary | 41 |
| abstract_inverted_index.piecewise | 8, 209 |
| abstract_inverted_index.procedure | 62, 107 |
| abstract_inverted_index.redundant | 33 |
| abstract_inverted_index.resulting | 21 |
| abstract_inverted_index.selection | 65 |
| abstract_inverted_index.structure | 25 |
| abstract_inverted_index.synthetic | 141 |
| abstract_inverted_index.Therefore, | 199 |
| abstract_inverted_index.adjustment | 110 |
| abstract_inverted_index.attractive | 206 |
| abstract_inverted_index.components | 36 |
| abstract_inverted_index.functions, | 20 |
| abstract_inverted_index.individual | 126 |
| abstract_inverted_index.iteration. | 88 |
| abstract_inverted_index.parameters | 182 |
| abstract_inverted_index.real-world | 143 |
| abstract_inverted_index.relatively | 15 |
| abstract_inverted_index.underlying | 193 |
| abstract_inverted_index.Experiments | 138 |
| abstract_inverted_index.advancement | 207 |
| abstract_inverted_index.assumptions | 190 |
| abstract_inverted_index.boundaries, | 74 |
| abstract_inverted_index.classifier. | 10 |
| abstract_inverted_index.complicated | 23 |
| abstract_inverted_index.statistical | 194 |
| abstract_inverted_index.theoretical | 4 |
| abstract_inverted_index.constructing | 7 |
| abstract_inverted_index.established. | 99 |
| abstract_inverted_index.over-fitting | 168 |
| abstract_inverted_index.performance. | 154 |
| abstract_inverted_index.progression. | 42 |
| abstract_inverted_index.distributions | 195 |
| abstract_inverted_index.Multiconlitron | 0 |
| abstract_inverted_index.classification | 116 |
| abstract_inverted_index.generalization | 28, 172 |
| abstract_inverted_index.multiconlitron | 52, 151 |
| abstract_inverted_index.significantly, | 175 |
| abstract_inverted_index.multiconlitron. | 58, 217 |
| abstract_inverted_index.razor”, | 161 |
| abstract_inverted_index.“Occam’s | 160 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/1 |
| sustainable_development_goals[0].score | 0.5699999928474426 |
| sustainable_development_goals[0].display_name | No poverty |
| citation_normalized_percentile.value | 0.47204003 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |