A groundwater level spatiotemporal prediction model based on graph convolutional networks with a long short-term memory Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.2166/hydro.2024.226
The performance of regional groundwater level (GWL) prediction model hinges on understanding intricate spatiotemporal correlations among monitoring wells. In this study, a graph convolutional network (GCN) with a long short-term memory (LSTM) (GCN–LSTM) model is introduced for GWL prediction utilizing data from 16 wells located in the northeastern Xiangtan City, China. This model is designed to account for both the hybrid temporal dependencies and spatial autocorrelations among wells. It consists of two parts: the spatial part employs GCNs to extract spatial characteristics from a spatial self-similarity weight matrix and an attribute self-similarity weight matrix among wells; the temporal part utilizes a LSTM module to capture the temporal patterns of GWL sequences, along with monthly precipitation and temperature data. This model dynamically predicts changes in groundwater levels, achieving higher accuracy on average compared to single-well predictions using LSTM. By incorporating both temporal dependencies and spatial autocorrelations, the GCN–LSTM model demonstrated an average improvement in goodness-of-fit of approximately 11.21% over the LSTM-based model for individual wells. Its application holds significant reference value for the sustainable utilization and development of groundwater resources in Xiangtan City.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.2166/hydro.2024.226
- OA Status
- diamond
- Cited By
- 6
- References
- 69
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404060012
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404060012Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2166/hydro.2024.226Digital Object Identifier
- Title
-
A groundwater level spatiotemporal prediction model based on graph convolutional networks with a long short-term memoryWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-01Full publication date if available
- Authors
-
Lifang Wang, Zhengwen Jiang, Lei Song, Xi Yu, Shujun Yuan, Baoyi ZhangList of authors in order
- Landing page
-
https://doi.org/10.2166/hydro.2024.226Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.2166/hydro.2024.226Direct OA link when available
- Concepts
-
Term (time), Computer science, Graph, Long short term memory, Artificial intelligence, Theoretical computer science, Artificial neural network, Recurrent neural network, Physics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
69Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404060012 |
|---|---|
| doi | https://doi.org/10.2166/hydro.2024.226 |
| ids.doi | https://doi.org/10.2166/hydro.2024.226 |
| ids.openalex | https://openalex.org/W4404060012 |
| fwci | 2.3248507 |
| type | article |
| title | A groundwater level spatiotemporal prediction model based on graph convolutional networks with a long short-term memory |
| awards[0].id | https://openalex.org/G4388672545 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 42072326 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G4212850657 |
| awards[1].funder_id | https://openalex.org/F4320322843 |
| awards[1].display_name | |
| awards[1].funder_award_id | 2023JJ60188, 2023JJ60190, and 2022JJ30708 |
| awards[1].funder_display_name | Natural Science Foundation of Hunan Province |
| biblio.issue | 11 |
| biblio.volume | 26 |
| biblio.last_page | 2979 |
| biblio.first_page | 2962 |
| topics[0].id | https://openalex.org/T11490 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.964900016784668 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Hydrological Forecasting Using AI |
| topics[1].id | https://openalex.org/T10330 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9404000043869019 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2312 |
| topics[1].subfield.display_name | Water Science and Technology |
| topics[1].display_name | Hydrology and Watershed Management Studies |
| topics[2].id | https://openalex.org/T13734 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9200000166893005 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Advanced Computational Techniques and Applications |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320322843 |
| funders[1].ror | |
| funders[1].display_name | Natural Science Foundation of Hunan Province |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C61797465 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6634296178817749 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1188986 |
| concepts[0].display_name | Term (time) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5757282376289368 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C132525143 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5676716566085815 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[2].display_name | Graph |
| concepts[3].id | https://openalex.org/C133488467 |
| concepts[3].level | 4 |
| concepts[3].score | 0.553347110748291 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q6673524 |
| concepts[3].display_name | Long short term memory |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.24037492275238037 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C80444323 |
| concepts[5].level | 1 |
| concepts[5].score | 0.147874653339386 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[5].display_name | Theoretical computer science |
| concepts[6].id | https://openalex.org/C50644808 |
| concepts[6].level | 2 |
| concepts[6].score | 0.08923161029815674 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[6].display_name | Artificial neural network |
| concepts[7].id | https://openalex.org/C147168706 |
| concepts[7].level | 3 |
| concepts[7].score | 0.05621391534805298 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1457734 |
| concepts[7].display_name | Recurrent neural network |
| concepts[8].id | https://openalex.org/C121332964 |
| concepts[8].level | 0 |
| concepts[8].score | 0.05524718761444092 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[8].display_name | Physics |
| concepts[9].id | https://openalex.org/C62520636 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[9].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/term |
| keywords[0].score | 0.6634296178817749 |
| keywords[0].display_name | Term (time) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5757282376289368 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/graph |
| keywords[2].score | 0.5676716566085815 |
| keywords[2].display_name | Graph |
| keywords[3].id | https://openalex.org/keywords/long-short-term-memory |
| keywords[3].score | 0.553347110748291 |
| keywords[3].display_name | Long short term memory |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.24037492275238037 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[5].score | 0.147874653339386 |
| keywords[5].display_name | Theoretical computer science |
| keywords[6].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[6].score | 0.08923161029815674 |
| keywords[6].display_name | Artificial neural network |
| keywords[7].id | https://openalex.org/keywords/recurrent-neural-network |
| keywords[7].score | 0.05621391534805298 |
| keywords[7].display_name | Recurrent neural network |
| keywords[8].id | https://openalex.org/keywords/physics |
| keywords[8].score | 0.05524718761444092 |
| keywords[8].display_name | Physics |
| language | en |
| locations[0].id | doi:10.2166/hydro.2024.226 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S79392371 |
| locations[0].source.issn | 1464-7141, 1465-1734 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1464-7141 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of Hydroinformatics |
| locations[0].source.host_organization | https://openalex.org/P4310320298 |
| locations[0].source.host_organization_name | IWA Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320298 |
| locations[0].source.host_organization_lineage_names | IWA Publishing |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Hydroinformatics |
| locations[0].landing_page_url | https://doi.org/10.2166/hydro.2024.226 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5102770743 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8950-4069 |
| authorships[0].author.display_name | Lifang Wang |
| authorships[0].affiliations[0].raw_affiliation_string | a Department of Surveying and Mapping Geography, Hunan Vocational College of Engineering, Changsha, China |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lifang Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | a Department of Surveying and Mapping Geography, Hunan Vocational College of Engineering, Changsha, China |
| authorships[1].author.id | https://openalex.org/A5091142086 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Zhengwen Jiang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210120238, https://openalex.org/I4210142192 |
| authorships[1].affiliations[0].raw_affiliation_string | b PowerChina Zhongnan Engineering Corporation Limited, Changsha, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210120238 |
| authorships[1].institutions[0].ror | https://ror.org/01varr368 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210120238 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | PowerChina (China) |
| authorships[1].institutions[1].id | https://openalex.org/I4210142192 |
| authorships[1].institutions[1].ror | https://ror.org/03mcefb58 |
| authorships[1].institutions[1].type | company |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210142192 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Powerchina Huadong Engineering Corporation (China) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhengwen Jiang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | b PowerChina Zhongnan Engineering Corporation Limited, Changsha, China |
| authorships[2].author.id | https://openalex.org/A5048947860 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0435-2287 |
| authorships[2].author.display_name | Lei Song |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210162797 |
| authorships[2].affiliations[0].raw_affiliation_string | c Hunan Institute of Geological Disaster Investigation and Monitoring, Changsha, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210162797 |
| authorships[2].institutions[0].ror | https://ror.org/054fkw726 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210162797 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Hunan Institute of Microbiology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lei Song |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | c Hunan Institute of Geological Disaster Investigation and Monitoring, Changsha, China |
| authorships[3].author.id | https://openalex.org/A5101721113 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5764-813X |
| authorships[3].author.display_name | Xi Yu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I139660479 |
| authorships[3].affiliations[0].raw_affiliation_string | d Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Ministry of Education)/ School of Geosciences and Info-Physics, Central South University, Changsha, China |
| authorships[3].institutions[0].id | https://openalex.org/I139660479 |
| authorships[3].institutions[0].ror | https://ror.org/00f1zfq44 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I139660479 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Central South University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xi Yu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | d Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Ministry of Education)/ School of Geosciences and Info-Physics, Central South University, Changsha, China |
| authorships[4].author.id | https://openalex.org/A5108995262 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Shujun Yuan |
| authorships[4].affiliations[0].raw_affiliation_string | a Department of Surveying and Mapping Geography, Hunan Vocational College of Engineering, Changsha, China |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Shujun Yuan |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | a Department of Surveying and Mapping Geography, Hunan Vocational College of Engineering, Changsha, China |
| authorships[5].author.id | https://openalex.org/A5051407890 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6075-9359 |
| authorships[5].author.display_name | Baoyi Zhang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I139660479 |
| authorships[5].affiliations[0].raw_affiliation_string | d Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Ministry of Education)/ School of Geosciences and Info-Physics, Central South University, Changsha, China |
| authorships[5].institutions[0].id | https://openalex.org/I139660479 |
| authorships[5].institutions[0].ror | https://ror.org/00f1zfq44 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I139660479 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Central South University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Baoyi Zhang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | d Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Ministry of Education)/ School of Geosciences and Info-Physics, Central South University, Changsha, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.2166/hydro.2024.226 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A groundwater level spatiotemporal prediction model based on graph convolutional networks with a long short-term memory |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11490 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.964900016784668 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Hydrological Forecasting Using AI |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4401807425 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2166/hydro.2024.226 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S79392371 |
| best_oa_location.source.issn | 1464-7141, 1465-1734 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1464-7141 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of Hydroinformatics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320298 |
| best_oa_location.source.host_organization_name | IWA Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320298 |
| best_oa_location.source.host_organization_lineage_names | IWA Publishing |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Hydroinformatics |
| best_oa_location.landing_page_url | https://doi.org/10.2166/hydro.2024.226 |
| primary_location.id | doi:10.2166/hydro.2024.226 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S79392371 |
| primary_location.source.issn | 1464-7141, 1465-1734 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1464-7141 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of Hydroinformatics |
| primary_location.source.host_organization | https://openalex.org/P4310320298 |
| primary_location.source.host_organization_name | IWA Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320298 |
| primary_location.source.host_organization_lineage_names | IWA Publishing |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Hydroinformatics |
| primary_location.landing_page_url | https://doi.org/10.2166/hydro.2024.226 |
| publication_date | 2024-11-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4392767783, https://openalex.org/W3130402964, https://openalex.org/W3177929715, https://openalex.org/W3210458411, https://openalex.org/W2905215511, https://openalex.org/W4389098134, https://openalex.org/W4391483848, https://openalex.org/W4388997335, https://openalex.org/W3181693116, https://openalex.org/W4387618981, https://openalex.org/W3040305819, https://openalex.org/W4394786040, https://openalex.org/W3217756247, https://openalex.org/W1656598679, https://openalex.org/W2035217709, https://openalex.org/W1501856433, https://openalex.org/W4283366726, https://openalex.org/W3175039957, https://openalex.org/W2064675550, https://openalex.org/W2128084896, https://openalex.org/W6850258509, https://openalex.org/W2807252330, https://openalex.org/W6726873649, https://openalex.org/W4385666331, https://openalex.org/W3159928446, https://openalex.org/W2136618539, https://openalex.org/W4310170663, https://openalex.org/W3124590480, https://openalex.org/W4210472829, https://openalex.org/W4206948839, https://openalex.org/W2735484631, https://openalex.org/W4387993242, https://openalex.org/W2907891425, https://openalex.org/W2129629964, https://openalex.org/W1498436455, https://openalex.org/W1553433319, https://openalex.org/W4220922322, https://openalex.org/W2623944707, https://openalex.org/W4389961073, https://openalex.org/W6674330103, https://openalex.org/W2067872494, https://openalex.org/W4385480733, https://openalex.org/W3088611441, https://openalex.org/W4386579478, https://openalex.org/W2150355110, https://openalex.org/W3149057642, https://openalex.org/W4214761414, https://openalex.org/W3151387141, https://openalex.org/W4220732246, https://openalex.org/W4312221092, https://openalex.org/W2109242206, https://openalex.org/W2756203131, https://openalex.org/W4302292814, https://openalex.org/W4283736899, https://openalex.org/W2964319113, https://openalex.org/W2910892140, https://openalex.org/W4388160037, https://openalex.org/W4388806427, https://openalex.org/W4401075967, https://openalex.org/W4391885303, https://openalex.org/W4389100744, https://openalex.org/W2979535451, https://openalex.org/W2901504064, https://openalex.org/W2146291222, https://openalex.org/W4292832893, https://openalex.org/W2964015378, https://openalex.org/W2095705004, https://openalex.org/W4321457816, https://openalex.org/W3103720336 |
| referenced_works_count | 69 |
| abstract_inverted_index.a | 22, 28, 84, 101 |
| abstract_inverted_index.16 | 43 |
| abstract_inverted_index.By | 138 |
| abstract_inverted_index.In | 19 |
| abstract_inverted_index.It | 69 |
| abstract_inverted_index.an | 90, 150 |
| abstract_inverted_index.in | 46, 124, 153, 180 |
| abstract_inverted_index.is | 35, 54 |
| abstract_inverted_index.of | 3, 71, 109, 155, 177 |
| abstract_inverted_index.on | 11, 130 |
| abstract_inverted_index.to | 56, 79, 104, 133 |
| abstract_inverted_index.GWL | 38, 110 |
| abstract_inverted_index.Its | 165 |
| abstract_inverted_index.The | 1 |
| abstract_inverted_index.and | 64, 89, 116, 143, 175 |
| abstract_inverted_index.for | 37, 58, 162, 171 |
| abstract_inverted_index.the | 47, 60, 74, 97, 106, 146, 159, 172 |
| abstract_inverted_index.two | 72 |
| abstract_inverted_index.GCNs | 78 |
| abstract_inverted_index.LSTM | 102 |
| abstract_inverted_index.This | 52, 119 |
| abstract_inverted_index.both | 59, 140 |
| abstract_inverted_index.data | 41 |
| abstract_inverted_index.from | 42, 83 |
| abstract_inverted_index.long | 29 |
| abstract_inverted_index.over | 158 |
| abstract_inverted_index.part | 76, 99 |
| abstract_inverted_index.this | 20 |
| abstract_inverted_index.with | 27, 113 |
| abstract_inverted_index.(GCN) | 26 |
| abstract_inverted_index.(GWL) | 7 |
| abstract_inverted_index.City, | 50 |
| abstract_inverted_index.City. | 182 |
| abstract_inverted_index.LSTM. | 137 |
| abstract_inverted_index.along | 112 |
| abstract_inverted_index.among | 16, 67, 95 |
| abstract_inverted_index.data. | 118 |
| abstract_inverted_index.graph | 23 |
| abstract_inverted_index.holds | 167 |
| abstract_inverted_index.level | 6 |
| abstract_inverted_index.model | 9, 34, 53, 120, 148, 161 |
| abstract_inverted_index.using | 136 |
| abstract_inverted_index.value | 170 |
| abstract_inverted_index.wells | 44 |
| abstract_inverted_index.(LSTM) | 32 |
| abstract_inverted_index.11.21% | 157 |
| abstract_inverted_index.China. | 51 |
| abstract_inverted_index.higher | 128 |
| abstract_inverted_index.hinges | 10 |
| abstract_inverted_index.hybrid | 61 |
| abstract_inverted_index.matrix | 88, 94 |
| abstract_inverted_index.memory | 31 |
| abstract_inverted_index.module | 103 |
| abstract_inverted_index.parts: | 73 |
| abstract_inverted_index.study, | 21 |
| abstract_inverted_index.weight | 87, 93 |
| abstract_inverted_index.wells. | 18, 68, 164 |
| abstract_inverted_index.wells; | 96 |
| abstract_inverted_index.account | 57 |
| abstract_inverted_index.average | 131, 151 |
| abstract_inverted_index.capture | 105 |
| abstract_inverted_index.changes | 123 |
| abstract_inverted_index.employs | 77 |
| abstract_inverted_index.extract | 80 |
| abstract_inverted_index.levels, | 126 |
| abstract_inverted_index.located | 45 |
| abstract_inverted_index.monthly | 114 |
| abstract_inverted_index.network | 25 |
| abstract_inverted_index.spatial | 65, 75, 81, 85, 144 |
| abstract_inverted_index.ABSTRACT | 0 |
| abstract_inverted_index.Xiangtan | 49, 181 |
| abstract_inverted_index.accuracy | 129 |
| abstract_inverted_index.compared | 132 |
| abstract_inverted_index.consists | 70 |
| abstract_inverted_index.designed | 55 |
| abstract_inverted_index.patterns | 108 |
| abstract_inverted_index.predicts | 122 |
| abstract_inverted_index.regional | 4 |
| abstract_inverted_index.temporal | 62, 98, 107, 141 |
| abstract_inverted_index.utilizes | 100 |
| abstract_inverted_index.achieving | 127 |
| abstract_inverted_index.attribute | 91 |
| abstract_inverted_index.intricate | 13 |
| abstract_inverted_index.reference | 169 |
| abstract_inverted_index.resources | 179 |
| abstract_inverted_index.utilizing | 40 |
| abstract_inverted_index.GCN–LSTM | 147 |
| abstract_inverted_index.LSTM-based | 160 |
| abstract_inverted_index.individual | 163 |
| abstract_inverted_index.introduced | 36 |
| abstract_inverted_index.monitoring | 17 |
| abstract_inverted_index.prediction | 8, 39 |
| abstract_inverted_index.sequences, | 111 |
| abstract_inverted_index.short-term | 30 |
| abstract_inverted_index.application | 166 |
| abstract_inverted_index.development | 176 |
| abstract_inverted_index.dynamically | 121 |
| abstract_inverted_index.groundwater | 5, 125, 178 |
| abstract_inverted_index.improvement | 152 |
| abstract_inverted_index.performance | 2 |
| abstract_inverted_index.predictions | 135 |
| abstract_inverted_index.significant | 168 |
| abstract_inverted_index.single-well | 134 |
| abstract_inverted_index.sustainable | 173 |
| abstract_inverted_index.temperature | 117 |
| abstract_inverted_index.utilization | 174 |
| abstract_inverted_index.(GCN–LSTM) | 33 |
| abstract_inverted_index.correlations | 15 |
| abstract_inverted_index.demonstrated | 149 |
| abstract_inverted_index.dependencies | 63, 142 |
| abstract_inverted_index.northeastern | 48 |
| abstract_inverted_index.approximately | 156 |
| abstract_inverted_index.convolutional | 24 |
| abstract_inverted_index.incorporating | 139 |
| abstract_inverted_index.precipitation | 115 |
| abstract_inverted_index.understanding | 12 |
| abstract_inverted_index.spatiotemporal | 14 |
| abstract_inverted_index.characteristics | 82 |
| abstract_inverted_index.goodness-of-fit | 154 |
| abstract_inverted_index.self-similarity | 86, 92 |
| abstract_inverted_index.autocorrelations | 66 |
| abstract_inverted_index.autocorrelations, | 145 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.83139726 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |