A Guide to Signal Processing Algorithms for Nanopore Sensors Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1021/acssensors.1c01618
Nanopore technology holds great promise for a wide range of applications such as biomedical sensing, chemical detection, desalination, and energy conversion. For sensing performed in electrolytes in particular, abundant information about the translocating analytes is hidden in the fluctuating monitoring ionic current contributed from interactions between the analytes and the nanopore. Such ionic currents are inevitably affected by noise; hence, signal processing is an inseparable component of sensing in order to identify the hidden features in the signals and to analyze them. This Guide starts from untangling the signal processing flow and categorizing the various algorithms developed to extracting the useful information. By sorting the algorithms under Machine Learning (ML)-based versus non-ML-based, their underlying architectures and properties are systematically evaluated. For each category, the development tactics and features of the algorithms with implementation examples are discussed by referring to their common signal processing flow graphically summarized in a chart and by highlighting their key issues tabulated for clear comparison. How to get started with building up an ML-based algorithm is subsequently presented. The specific properties of the ML-based algorithms are then discussed in terms of learning strategy, performance evaluation, experimental repeatability and reliability, data preparation, and data utilization strategy. This Guide is concluded by outlining strategies and considerations for prospect algorithms.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1021/acssensors.1c01618
- https://pubs.acs.org/doi/pdf/10.1021/acssensors.1c01618
- OA Status
- hybrid
- Cited By
- 80
- References
- 106
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3204648240
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3204648240Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1021/acssensors.1c01618Digital Object Identifier
- Title
-
A Guide to Signal Processing Algorithms for Nanopore SensorsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-10-04Full publication date if available
- Authors
-
Chenyu Wen, Darío Demattíes, Shi‐Li ZhangList of authors in order
- Landing page
-
https://doi.org/10.1021/acssensors.1c01618Publisher landing page
- PDF URL
-
https://pubs.acs.org/doi/pdf/10.1021/acssensors.1c01618Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://pubs.acs.org/doi/pdf/10.1021/acssensors.1c01618Direct OA link when available
- Concepts
-
Computer science, Algorithm, Signal processing, SIGNAL (programming language), Nanopore, Sorting, Noise (video), Machine learning, Reliability (semiconductor), Artificial intelligence, Analyte, Key (lock), Data processing, Data mining, Nanotechnology, Materials science, Chemistry, Physics, Programming language, Computer security, Operating system, Telecommunications, Radar, Power (physics), Physical chemistry, Quantum mechanics, Image (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
80Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 28, 2024: 14, 2023: 21, 2022: 17Per-year citation counts (last 5 years)
- References (count)
-
106Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3204648240 |
|---|---|
| doi | https://doi.org/10.1021/acssensors.1c01618 |
| ids.doi | https://doi.org/10.1021/acssensors.1c01618 |
| ids.mag | 3204648240 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/34601866 |
| ids.openalex | https://openalex.org/W3204648240 |
| fwci | 4.80491945 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000465 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Algorithms |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000069550 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Machine Learning |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D058608 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Nanopores |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D015203 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Reproducibility of Results |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D000465 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Algorithms |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D000069550 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Machine Learning |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D058608 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Nanopores |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D015203 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Reproducibility of Results |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D000465 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Algorithms |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000069550 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Machine Learning |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D058608 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Nanopores |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D015203 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Reproducibility of Results |
| type | article |
| title | A Guide to Signal Processing Algorithms for Nanopore Sensors |
| awards[0].id | https://openalex.org/G2333355650 |
| awards[0].funder_id | https://openalex.org/F4320322581 |
| awards[0].display_name | |
| awards[0].funder_award_id | 621-2014-6300 |
| awards[0].funder_display_name | Vetenskapsrådet |
| awards[1].id | https://openalex.org/G8453127603 |
| awards[1].funder_id | https://openalex.org/F4320322444 |
| awards[1].display_name | |
| awards[1].funder_award_id | 194-0646 |
| awards[1].funder_display_name | Stiftelsen Olle Engkvist Byggmästare |
| awards[2].id | https://openalex.org/G2116657205 |
| awards[2].funder_id | https://openalex.org/F4320322444 |
| awards[2].display_name | |
| awards[2].funder_award_id | 2016/39 |
| awards[2].funder_display_name | Stiftelsen Olle Engkvist Byggmästare |
| awards[3].id | https://openalex.org/G2836986666 |
| awards[3].funder_id | https://openalex.org/F4320322444 |
| awards[3].display_name | |
| awards[3].funder_award_id | 211-0085 |
| awards[3].funder_display_name | Stiftelsen Olle Engkvist Byggmästare |
| biblio.issue | 10 |
| biblio.volume | 6 |
| biblio.last_page | 3555 |
| biblio.first_page | 3536 |
| topics[0].id | https://openalex.org/T11582 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9983999729156494 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Nanopore and Nanochannel Transport Studies |
| topics[1].id | https://openalex.org/T10572 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.9884999990463257 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1908 |
| topics[1].subfield.display_name | Geophysics |
| topics[1].display_name | Geophysical and Geoelectrical Methods |
| topics[2].id | https://openalex.org/T11220 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9743000268936157 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2205 |
| topics[2].subfield.display_name | Civil and Structural Engineering |
| topics[2].display_name | Water Systems and Optimization |
| funders[0].id | https://openalex.org/F4320322444 |
| funders[0].ror | https://ror.org/05apbp152 |
| funders[0].display_name | Stiftelsen Olle Engkvist Byggmästare |
| funders[1].id | https://openalex.org/F4320322581 |
| funders[1].ror | https://ror.org/03zttf063 |
| funders[1].display_name | Vetenskapsrådet |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7339392900466919 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C11413529 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6565943956375122 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[1].display_name | Algorithm |
| concepts[2].id | https://openalex.org/C104267543 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6276900172233582 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q208163 |
| concepts[2].display_name | Signal processing |
| concepts[3].id | https://openalex.org/C2779843651 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5963436365127563 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7390335 |
| concepts[3].display_name | SIGNAL (programming language) |
| concepts[4].id | https://openalex.org/C141795571 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5798400640487671 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q580942 |
| concepts[4].display_name | Nanopore |
| concepts[5].id | https://openalex.org/C111696304 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5685325264930725 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2303697 |
| concepts[5].display_name | Sorting |
| concepts[6].id | https://openalex.org/C99498987 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5195265412330627 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[6].display_name | Noise (video) |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.511417806148529 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C43214815 |
| concepts[8].level | 3 |
| concepts[8].score | 0.5103668570518494 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7310987 |
| concepts[8].display_name | Reliability (semiconductor) |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.49039745330810547 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C10390740 |
| concepts[10].level | 2 |
| concepts[10].score | 0.46758317947387695 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2282401 |
| concepts[10].display_name | Analyte |
| concepts[11].id | https://openalex.org/C26517878 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4579523801803589 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q228039 |
| concepts[11].display_name | Key (lock) |
| concepts[12].id | https://openalex.org/C138827492 |
| concepts[12].level | 2 |
| concepts[12].score | 0.450101375579834 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q6661985 |
| concepts[12].display_name | Data processing |
| concepts[13].id | https://openalex.org/C124101348 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3444901704788208 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[13].display_name | Data mining |
| concepts[14].id | https://openalex.org/C171250308 |
| concepts[14].level | 1 |
| concepts[14].score | 0.2427695095539093 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11468 |
| concepts[14].display_name | Nanotechnology |
| concepts[15].id | https://openalex.org/C192562407 |
| concepts[15].level | 0 |
| concepts[15].score | 0.10224944353103638 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[15].display_name | Materials science |
| concepts[16].id | https://openalex.org/C185592680 |
| concepts[16].level | 0 |
| concepts[16].score | 0.08882972598075867 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[16].display_name | Chemistry |
| concepts[17].id | https://openalex.org/C121332964 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[17].display_name | Physics |
| concepts[18].id | https://openalex.org/C199360897 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[18].display_name | Programming language |
| concepts[19].id | https://openalex.org/C38652104 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[19].display_name | Computer security |
| concepts[20].id | https://openalex.org/C111919701 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[20].display_name | Operating system |
| concepts[21].id | https://openalex.org/C76155785 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[21].display_name | Telecommunications |
| concepts[22].id | https://openalex.org/C554190296 |
| concepts[22].level | 2 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q47528 |
| concepts[22].display_name | Radar |
| concepts[23].id | https://openalex.org/C163258240 |
| concepts[23].level | 2 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[23].display_name | Power (physics) |
| concepts[24].id | https://openalex.org/C147789679 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q11372 |
| concepts[24].display_name | Physical chemistry |
| concepts[25].id | https://openalex.org/C62520636 |
| concepts[25].level | 1 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[25].display_name | Quantum mechanics |
| concepts[26].id | https://openalex.org/C115961682 |
| concepts[26].level | 2 |
| concepts[26].score | 0.0 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[26].display_name | Image (mathematics) |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7339392900466919 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/algorithm |
| keywords[1].score | 0.6565943956375122 |
| keywords[1].display_name | Algorithm |
| keywords[2].id | https://openalex.org/keywords/signal-processing |
| keywords[2].score | 0.6276900172233582 |
| keywords[2].display_name | Signal processing |
| keywords[3].id | https://openalex.org/keywords/signal |
| keywords[3].score | 0.5963436365127563 |
| keywords[3].display_name | SIGNAL (programming language) |
| keywords[4].id | https://openalex.org/keywords/nanopore |
| keywords[4].score | 0.5798400640487671 |
| keywords[4].display_name | Nanopore |
| keywords[5].id | https://openalex.org/keywords/sorting |
| keywords[5].score | 0.5685325264930725 |
| keywords[5].display_name | Sorting |
| keywords[6].id | https://openalex.org/keywords/noise |
| keywords[6].score | 0.5195265412330627 |
| keywords[6].display_name | Noise (video) |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.511417806148529 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/reliability |
| keywords[8].score | 0.5103668570518494 |
| keywords[8].display_name | Reliability (semiconductor) |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.49039745330810547 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/analyte |
| keywords[10].score | 0.46758317947387695 |
| keywords[10].display_name | Analyte |
| keywords[11].id | https://openalex.org/keywords/key |
| keywords[11].score | 0.4579523801803589 |
| keywords[11].display_name | Key (lock) |
| keywords[12].id | https://openalex.org/keywords/data-processing |
| keywords[12].score | 0.450101375579834 |
| keywords[12].display_name | Data processing |
| keywords[13].id | https://openalex.org/keywords/data-mining |
| keywords[13].score | 0.3444901704788208 |
| keywords[13].display_name | Data mining |
| keywords[14].id | https://openalex.org/keywords/nanotechnology |
| keywords[14].score | 0.2427695095539093 |
| keywords[14].display_name | Nanotechnology |
| keywords[15].id | https://openalex.org/keywords/materials-science |
| keywords[15].score | 0.10224944353103638 |
| keywords[15].display_name | Materials science |
| keywords[16].id | https://openalex.org/keywords/chemistry |
| keywords[16].score | 0.08882972598075867 |
| keywords[16].display_name | Chemistry |
| language | en |
| locations[0].id | doi:10.1021/acssensors.1c01618 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764631046 |
| locations[0].source.issn | 2379-3694 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2379-3694 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | ACS Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310320006 |
| locations[0].source.host_organization_name | American Chemical Society |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320006 |
| locations[0].source.host_organization_lineage_names | American Chemical Society |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://pubs.acs.org/doi/pdf/10.1021/acssensors.1c01618 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ACS Sensors |
| locations[0].landing_page_url | https://doi.org/10.1021/acssensors.1c01618 |
| locations[1].id | pmid:34601866 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | ACS sensors |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/34601866 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:8546757 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | publishedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | True |
| locations[2].is_published | True |
| locations[2].raw_source_name | ACS Sens |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8546757 |
| locations[3].id | pmh:oai:DiVA.org:uu-459212 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400013 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Publications (Konstfack University of Arts, Crafts, and Design) |
| locations[3].source.host_organization | https://openalex.org/I218177685 |
| locations[3].source.host_organization_name | University College of Arts Crafts and Design |
| locations[3].source.host_organization_lineage | https://openalex.org/I218177685 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Article, review/survey |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-459212 |
| locations[4].id | pmh:oai:europepmc.org:7436989 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306400806 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | Europe PMC (PubMed Central) |
| locations[4].source.host_organization | https://openalex.org/I1303153112 |
| locations[4].source.host_organization_name | European Bioinformatics Institute |
| locations[4].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | |
| locations[4].landing_page_url | http://europepmc.org/pmc/articles/PMC8546757 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5073461361 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4395-7905 |
| authorships[0].author.display_name | Chenyu Wen |
| authorships[0].countries | SE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I123387679 |
| authorships[0].affiliations[0].raw_affiliation_string | Division of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, SE-751 03 Uppsala, Sweden |
| authorships[0].institutions[0].id | https://openalex.org/I123387679 |
| authorships[0].institutions[0].ror | https://ror.org/048a87296 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I123387679 |
| authorships[0].institutions[0].country_code | SE |
| authorships[0].institutions[0].display_name | Uppsala University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chenyu Wen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Division of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, SE-751 03 Uppsala, Sweden |
| authorships[1].author.id | https://openalex.org/A5012083077 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8726-7837 |
| authorships[1].author.display_name | Darío Demattíes |
| authorships[1].countries | AR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210152303 |
| authorships[1].affiliations[0].raw_affiliation_string | Instituto de Ciencias Humanas, Sociales y Ambientales, CONICET Mendoza Technological Scientific Center, Mendoza M5500, Argentina |
| authorships[1].institutions[0].id | https://openalex.org/I4210152303 |
| authorships[1].institutions[0].ror | https://ror.org/055wmc747 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I151201029, https://openalex.org/I4210123736, https://openalex.org/I4210152303, https://openalex.org/I4387155568 |
| authorships[1].institutions[0].country_code | AR |
| authorships[1].institutions[0].display_name | Centro Científico Tecnológico - Mendoza |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dario Dematties |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Instituto de Ciencias Humanas, Sociales y Ambientales, CONICET Mendoza Technological Scientific Center, Mendoza M5500, Argentina |
| authorships[2].author.id | https://openalex.org/A5018025509 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2417-274X |
| authorships[2].author.display_name | Shi‐Li Zhang |
| authorships[2].countries | SE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I123387679 |
| authorships[2].affiliations[0].raw_affiliation_string | Division of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, SE-751 03 Uppsala, Sweden |
| authorships[2].institutions[0].id | https://openalex.org/I123387679 |
| authorships[2].institutions[0].ror | https://ror.org/048a87296 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I123387679 |
| authorships[2].institutions[0].country_code | SE |
| authorships[2].institutions[0].display_name | Uppsala University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Shi-Li Zhang |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Division of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, SE-751 03 Uppsala, Sweden |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://pubs.acs.org/doi/pdf/10.1021/acssensors.1c01618 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Guide to Signal Processing Algorithms for Nanopore Sensors |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11582 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9983999729156494 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Nanopore and Nanochannel Transport Studies |
| related_works | https://openalex.org/W2055215578, https://openalex.org/W3097090396, https://openalex.org/W2734703372, https://openalex.org/W2267068863, https://openalex.org/W1989500433, https://openalex.org/W1944150046, https://openalex.org/W2371768944, https://openalex.org/W3167367610, https://openalex.org/W3168869900, https://openalex.org/W2024913001 |
| cited_by_count | 80 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 28 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 14 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 21 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 17 |
| locations_count | 5 |
| best_oa_location.id | doi:10.1021/acssensors.1c01618 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764631046 |
| best_oa_location.source.issn | 2379-3694 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2379-3694 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | ACS Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310320006 |
| best_oa_location.source.host_organization_name | American Chemical Society |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320006 |
| best_oa_location.source.host_organization_lineage_names | American Chemical Society |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://pubs.acs.org/doi/pdf/10.1021/acssensors.1c01618 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | ACS Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.1021/acssensors.1c01618 |
| primary_location.id | doi:10.1021/acssensors.1c01618 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764631046 |
| primary_location.source.issn | 2379-3694 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2379-3694 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | ACS Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310320006 |
| primary_location.source.host_organization_name | American Chemical Society |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320006 |
| primary_location.source.host_organization_lineage_names | American Chemical Society |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://pubs.acs.org/doi/pdf/10.1021/acssensors.1c01618 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ACS Sensors |
| primary_location.landing_page_url | https://doi.org/10.1021/acssensors.1c01618 |
| publication_date | 2021-10-04 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2346680365, https://openalex.org/W3016275791, https://openalex.org/W1982280799, https://openalex.org/W2775403624, https://openalex.org/W2317941865, https://openalex.org/W2344688805, https://openalex.org/W2083782746, https://openalex.org/W2007684583, https://openalex.org/W2137018822, https://openalex.org/W2741056065, https://openalex.org/W3093502028, https://openalex.org/W3100709371, https://openalex.org/W3000082467, https://openalex.org/W3108775389, https://openalex.org/W3114751131, https://openalex.org/W2979986216, https://openalex.org/W2916945258, https://openalex.org/W2070748696, https://openalex.org/W2097065797, https://openalex.org/W2274936080, https://openalex.org/W2894834497, https://openalex.org/W2165850619, https://openalex.org/W2286922890, https://openalex.org/W3000521929, https://openalex.org/W2586103361, https://openalex.org/W3047373814, https://openalex.org/W2018822918, https://openalex.org/W2908261006, https://openalex.org/W1991093435, https://openalex.org/W3033291673, https://openalex.org/W2540379510, https://openalex.org/W2807257562, https://openalex.org/W2027359820, https://openalex.org/W3194491669, https://openalex.org/W2978535631, https://openalex.org/W1927956380, https://openalex.org/W2067689618, https://openalex.org/W2328788097, https://openalex.org/W2410867383, https://openalex.org/W2316903776, https://openalex.org/W2299591620, https://openalex.org/W2399805483, https://openalex.org/W2034847296, https://openalex.org/W3157785661, https://openalex.org/W1965151798, https://openalex.org/W2949649541, https://openalex.org/W2772905275, https://openalex.org/W2903402350, https://openalex.org/W2899436384, https://openalex.org/W2808961480, https://openalex.org/W2133372935, https://openalex.org/W2900024189, https://openalex.org/W2978953816, https://openalex.org/W2892075913, https://openalex.org/W2332407442, https://openalex.org/W3024430920, https://openalex.org/W2894558132, https://openalex.org/W2936223241, https://openalex.org/W2562252980, https://openalex.org/W3047277824, https://openalex.org/W3160014088, https://openalex.org/W2100810979, https://openalex.org/W2109069671, https://openalex.org/W2750301853, https://openalex.org/W2588911568, https://openalex.org/W2921905012, https://openalex.org/W2162910164, https://openalex.org/W2945711050, https://openalex.org/W3124014614, https://openalex.org/W2140494000, https://openalex.org/W1781340781, https://openalex.org/W3090701675, https://openalex.org/W2945903506, https://openalex.org/W2557173833, https://openalex.org/W3164731743, https://openalex.org/W2338392657, https://openalex.org/W1865546541, https://openalex.org/W3089008162, https://openalex.org/W3172882582, https://openalex.org/W3187214156, https://openalex.org/W2919115771, https://openalex.org/W2794569677, https://openalex.org/W2947049608, https://openalex.org/W3107013815, https://openalex.org/W3107287854, https://openalex.org/W2951108438, https://openalex.org/W2782968570, https://openalex.org/W3133629087, https://openalex.org/W2804251042, https://openalex.org/W2112796928, https://openalex.org/W2097117768, https://openalex.org/W2549139847, https://openalex.org/W2963446712, https://openalex.org/W2537767267, https://openalex.org/W2064675550, https://openalex.org/W3177828909, https://openalex.org/W2155653793, https://openalex.org/W2115650093, https://openalex.org/W2167277498, https://openalex.org/W3126220825, https://openalex.org/W2746791238, https://openalex.org/W3007935259, https://openalex.org/W2106401878, https://openalex.org/W2912500072, https://openalex.org/W4243421480, https://openalex.org/W3016210511 |
| referenced_works_count | 106 |
| abstract_inverted_index.a | 6, 147 |
| abstract_inverted_index.By | 102 |
| abstract_inverted_index.an | 63, 166 |
| abstract_inverted_index.as | 12 |
| abstract_inverted_index.by | 57, 136, 150, 203 |
| abstract_inverted_index.in | 24, 26, 36, 68, 75, 146, 182 |
| abstract_inverted_index.is | 34, 62, 169, 201 |
| abstract_inverted_index.of | 9, 66, 128, 175, 184 |
| abstract_inverted_index.to | 70, 79, 97, 138, 160 |
| abstract_inverted_index.up | 165 |
| abstract_inverted_index.For | 21, 120 |
| abstract_inverted_index.How | 159 |
| abstract_inverted_index.The | 172 |
| abstract_inverted_index.and | 18, 48, 78, 91, 115, 126, 149, 191, 195, 206 |
| abstract_inverted_index.are | 54, 117, 134, 179 |
| abstract_inverted_index.for | 5, 156, 208 |
| abstract_inverted_index.get | 161 |
| abstract_inverted_index.key | 153 |
| abstract_inverted_index.the | 31, 37, 46, 49, 72, 76, 87, 93, 99, 104, 123, 129, 176 |
| abstract_inverted_index.Such | 51 |
| abstract_inverted_index.This | 82, 199 |
| abstract_inverted_index.data | 193, 196 |
| abstract_inverted_index.each | 121 |
| abstract_inverted_index.flow | 90, 143 |
| abstract_inverted_index.from | 43, 85 |
| abstract_inverted_index.such | 11 |
| abstract_inverted_index.then | 180 |
| abstract_inverted_index.wide | 7 |
| abstract_inverted_index.with | 131, 163 |
| abstract_inverted_index.Guide | 83, 200 |
| abstract_inverted_index.about | 30 |
| abstract_inverted_index.chart | 148 |
| abstract_inverted_index.clear | 157 |
| abstract_inverted_index.great | 3 |
| abstract_inverted_index.holds | 2 |
| abstract_inverted_index.ionic | 40, 52 |
| abstract_inverted_index.order | 69 |
| abstract_inverted_index.range | 8 |
| abstract_inverted_index.terms | 183 |
| abstract_inverted_index.their | 112, 139, 152 |
| abstract_inverted_index.them. | 81 |
| abstract_inverted_index.under | 106 |
| abstract_inverted_index.common | 140 |
| abstract_inverted_index.energy | 19 |
| abstract_inverted_index.hence, | 59 |
| abstract_inverted_index.hidden | 35, 73 |
| abstract_inverted_index.issues | 154 |
| abstract_inverted_index.noise; | 58 |
| abstract_inverted_index.signal | 60, 88, 141 |
| abstract_inverted_index.starts | 84 |
| abstract_inverted_index.useful | 100 |
| abstract_inverted_index.versus | 110 |
| abstract_inverted_index.Machine | 107 |
| abstract_inverted_index.analyze | 80 |
| abstract_inverted_index.between | 45 |
| abstract_inverted_index.current | 41 |
| abstract_inverted_index.promise | 4 |
| abstract_inverted_index.sensing | 22, 67 |
| abstract_inverted_index.signals | 77 |
| abstract_inverted_index.sorting | 103 |
| abstract_inverted_index.started | 162 |
| abstract_inverted_index.tactics | 125 |
| abstract_inverted_index.various | 94 |
| abstract_inverted_index.Learning | 108 |
| abstract_inverted_index.ML-based | 167, 177 |
| abstract_inverted_index.Nanopore | 0 |
| abstract_inverted_index.abundant | 28 |
| abstract_inverted_index.affected | 56 |
| abstract_inverted_index.analytes | 33, 47 |
| abstract_inverted_index.building | 164 |
| abstract_inverted_index.chemical | 15 |
| abstract_inverted_index.currents | 53 |
| abstract_inverted_index.examples | 133 |
| abstract_inverted_index.features | 74, 127 |
| abstract_inverted_index.identify | 71 |
| abstract_inverted_index.learning | 185 |
| abstract_inverted_index.prospect | 209 |
| abstract_inverted_index.sensing, | 14 |
| abstract_inverted_index.specific | 173 |
| abstract_inverted_index.algorithm | 168 |
| abstract_inverted_index.category, | 122 |
| abstract_inverted_index.component | 65 |
| abstract_inverted_index.concluded | 202 |
| abstract_inverted_index.developed | 96 |
| abstract_inverted_index.discussed | 135, 181 |
| abstract_inverted_index.nanopore. | 50 |
| abstract_inverted_index.outlining | 204 |
| abstract_inverted_index.performed | 23 |
| abstract_inverted_index.referring | 137 |
| abstract_inverted_index.strategy, | 186 |
| abstract_inverted_index.strategy. | 198 |
| abstract_inverted_index.tabulated | 155 |
| abstract_inverted_index.(ML)-based | 109 |
| abstract_inverted_index.algorithms | 95, 105, 130, 178 |
| abstract_inverted_index.biomedical | 13 |
| abstract_inverted_index.detection, | 16 |
| abstract_inverted_index.evaluated. | 119 |
| abstract_inverted_index.extracting | 98 |
| abstract_inverted_index.inevitably | 55 |
| abstract_inverted_index.monitoring | 39 |
| abstract_inverted_index.presented. | 171 |
| abstract_inverted_index.processing | 61, 89, 142 |
| abstract_inverted_index.properties | 116, 174 |
| abstract_inverted_index.strategies | 205 |
| abstract_inverted_index.summarized | 145 |
| abstract_inverted_index.technology | 1 |
| abstract_inverted_index.underlying | 113 |
| abstract_inverted_index.untangling | 86 |
| abstract_inverted_index.algorithms. | 210 |
| abstract_inverted_index.comparison. | 158 |
| abstract_inverted_index.contributed | 42 |
| abstract_inverted_index.conversion. | 20 |
| abstract_inverted_index.development | 124 |
| abstract_inverted_index.evaluation, | 188 |
| abstract_inverted_index.fluctuating | 38 |
| abstract_inverted_index.graphically | 144 |
| abstract_inverted_index.information | 29 |
| abstract_inverted_index.inseparable | 64 |
| abstract_inverted_index.particular, | 27 |
| abstract_inverted_index.performance | 187 |
| abstract_inverted_index.utilization | 197 |
| abstract_inverted_index.applications | 10 |
| abstract_inverted_index.categorizing | 92 |
| abstract_inverted_index.electrolytes | 25 |
| abstract_inverted_index.experimental | 189 |
| abstract_inverted_index.highlighting | 151 |
| abstract_inverted_index.information. | 101 |
| abstract_inverted_index.interactions | 44 |
| abstract_inverted_index.preparation, | 194 |
| abstract_inverted_index.reliability, | 192 |
| abstract_inverted_index.subsequently | 170 |
| abstract_inverted_index.architectures | 114 |
| abstract_inverted_index.desalination, | 17 |
| abstract_inverted_index.non-ML-based, | 111 |
| abstract_inverted_index.repeatability | 190 |
| abstract_inverted_index.translocating | 32 |
| abstract_inverted_index.considerations | 207 |
| abstract_inverted_index.implementation | 132 |
| abstract_inverted_index.systematically | 118 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| corresponding_author_ids | https://openalex.org/A5018025509 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I123387679 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.8999999761581421 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.95546182 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |