A Hands-On Introduction to Data Analytics for Biomedical Research Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1093/function/zqaf015
Artificial intelligence (AI) applications are having increasing impacts in the biomedical sciences. Modern AI tools enable uncovering hidden patterns in large datasets, forecasting outcomes, and numerous other applications. Despite the availability and power of these tools, the rapid expansion and complexity of AI applications can be daunting, and there is a conspicuous absence of consensus on their ethical and responsible use. Misapplication of AI can result in invalid, unclear, or biased outcomes, exacerbated by the unfamiliarity of many biomedical researchers with the underlying mathematical and computational principles. To address these challenges, this review and tutorial paper aims to achieve three primary objectives: (1) highlight prevalent data science applications in biomedical research, including data visualization, dimensionality reduction, missing data imputation, and predictive model training and evaluation; (2) provide comprehensible explanations of the mathematical foundations underpinning these methodologies; and (3) guide readers on the effective use and interpretation of software tools for implementing these methods in biomedical contexts. While introductory, this guide covers core principles essential for understanding advanced applications, empowering readers to critically interpret results, assess tools, and explore the potential and limitations of machine learning in their research. Ultimately, this paper serves as a practical foundation for biomedical researchers to confidently navigate the growing intersection of AI and biomedicine.
Related Topics
- Type
- review
- Language
- en
- Landing Page
- https://doi.org/10.1093/function/zqaf015
- https://academic.oup.com/function/advance-article-pdf/doi/10.1093/function/zqaf015/62892591/zqaf015.pdf
- OA Status
- gold
- References
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409258421
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409258421Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/function/zqaf015Digital Object Identifier
- Title
-
A Hands-On Introduction to Data Analytics for Biomedical ResearchWork title
- Type
-
reviewOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Joshua Pickard, Victoria E. Sturgess, Katherine McDonald, Nicholas Rossiter, Kelly B. Arnold, Yatrik M. Shah, Indika Rajapakse, Daniel BeardList of authors in order
- Landing page
-
https://doi.org/10.1093/function/zqaf015Publisher landing page
- PDF URL
-
https://academic.oup.com/function/advance-article-pdf/doi/10.1093/function/zqaf015/62892591/zqaf015.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://academic.oup.com/function/advance-article-pdf/doi/10.1093/function/zqaf015/62892591/zqaf015.pdfDirect OA link when available
- Concepts
-
Data science, Computer science, Biomedicine, Big data, Underpinning, Artificial intelligence, Grand Challenges, Toolbox, Management science, Data mining, Engineering, Bioinformatics, Civil engineering, Programming language, Biology, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
1Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409258421 |
|---|---|
| doi | https://doi.org/10.1093/function/zqaf015 |
| ids.doi | https://doi.org/10.1093/function/zqaf015 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40199731 |
| ids.openalex | https://openalex.org/W4409258421 |
| fwci | 0.0 |
| mesh[0].qualifier_ui | Q000379 |
| mesh[0].descriptor_ui | D035843 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | methods |
| mesh[0].descriptor_name | Biomedical Research |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D001185 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Artificial Intelligence |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D006801 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Humans |
| mesh[3].qualifier_ui | Q000379 |
| mesh[3].descriptor_ui | D000077488 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | methods |
| mesh[3].descriptor_name | Data Science |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D000069550 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Machine Learning |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D000098971 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Data Analytics |
| mesh[6].qualifier_ui | Q000379 |
| mesh[6].descriptor_ui | D035843 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | methods |
| mesh[6].descriptor_name | Biomedical Research |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D001185 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Artificial Intelligence |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D006801 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Humans |
| mesh[9].qualifier_ui | Q000379 |
| mesh[9].descriptor_ui | D000077488 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | methods |
| mesh[9].descriptor_name | Data Science |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D000069550 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Machine Learning |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D000098971 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Data Analytics |
| type | review |
| title | A Hands-On Introduction to Data Analytics for Biomedical Research |
| biblio.issue | 2 |
| biblio.volume | 6 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11636 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.7279000282287598 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2718 |
| topics[0].subfield.display_name | Health Informatics |
| topics[0].display_name | Artificial Intelligence in Healthcare and Education |
| topics[1].id | https://openalex.org/T14393 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.633400022983551 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2307 |
| topics[1].subfield.display_name | Health, Toxicology and Mutagenesis |
| topics[1].display_name | Health, Environment, Cognitive Aging |
| is_xpac | False |
| apc_list.value | 2870 |
| apc_list.currency | GBP |
| apc_list.value_usd | 3520 |
| apc_paid.value | 2870 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 3520 |
| concepts[0].id | https://openalex.org/C2522767166 |
| concepts[0].level | 1 |
| concepts[0].score | 0.7007496356964111 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[0].display_name | Data science |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6931273937225342 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C66782513 |
| concepts[2].level | 2 |
| concepts[2].score | 0.670703649520874 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q864601 |
| concepts[2].display_name | Biomedicine |
| concepts[3].id | https://openalex.org/C75684735 |
| concepts[3].level | 2 |
| concepts[3].score | 0.511781632900238 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q858810 |
| concepts[3].display_name | Big data |
| concepts[4].id | https://openalex.org/C2780871342 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4782092571258545 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7883752 |
| concepts[4].display_name | Underpinning |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.45092248916625977 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C2777362162 |
| concepts[6].level | 2 |
| concepts[6].score | 0.43527036905288696 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5594431 |
| concepts[6].display_name | Grand Challenges |
| concepts[7].id | https://openalex.org/C2777655017 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4144752621650696 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1501161 |
| concepts[7].display_name | Toolbox |
| concepts[8].id | https://openalex.org/C539667460 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3469102680683136 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2414942 |
| concepts[8].display_name | Management science |
| concepts[9].id | https://openalex.org/C124101348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.1342068910598755 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[9].display_name | Data mining |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.11079233884811401 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C60644358 |
| concepts[11].level | 1 |
| concepts[11].score | 0.10715171694755554 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q128570 |
| concepts[11].display_name | Bioinformatics |
| concepts[12].id | https://openalex.org/C147176958 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q77590 |
| concepts[12].display_name | Civil engineering |
| concepts[13].id | https://openalex.org/C199360897 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[13].display_name | Programming language |
| concepts[14].id | https://openalex.org/C86803240 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[14].display_name | Biology |
| concepts[15].id | https://openalex.org/C111919701 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[15].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/data-science |
| keywords[0].score | 0.7007496356964111 |
| keywords[0].display_name | Data science |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6931273937225342 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/biomedicine |
| keywords[2].score | 0.670703649520874 |
| keywords[2].display_name | Biomedicine |
| keywords[3].id | https://openalex.org/keywords/big-data |
| keywords[3].score | 0.511781632900238 |
| keywords[3].display_name | Big data |
| keywords[4].id | https://openalex.org/keywords/underpinning |
| keywords[4].score | 0.4782092571258545 |
| keywords[4].display_name | Underpinning |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.45092248916625977 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/grand-challenges |
| keywords[6].score | 0.43527036905288696 |
| keywords[6].display_name | Grand Challenges |
| keywords[7].id | https://openalex.org/keywords/toolbox |
| keywords[7].score | 0.4144752621650696 |
| keywords[7].display_name | Toolbox |
| keywords[8].id | https://openalex.org/keywords/management-science |
| keywords[8].score | 0.3469102680683136 |
| keywords[8].display_name | Management science |
| keywords[9].id | https://openalex.org/keywords/data-mining |
| keywords[9].score | 0.1342068910598755 |
| keywords[9].display_name | Data mining |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.11079233884811401 |
| keywords[10].display_name | Engineering |
| keywords[11].id | https://openalex.org/keywords/bioinformatics |
| keywords[11].score | 0.10715171694755554 |
| keywords[11].display_name | Bioinformatics |
| language | en |
| locations[0].id | doi:10.1093/function/zqaf015 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210215692 |
| locations[0].source.issn | 2633-8823 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2633-8823 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Function |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://academic.oup.com/function/advance-article-pdf/doi/10.1093/function/zqaf015/62892591/zqaf015.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Function |
| locations[0].landing_page_url | https://doi.org/10.1093/function/zqaf015 |
| locations[1].id | pmid:40199731 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Function (Oxford, England) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40199731 |
| locations[2].id | pmh:oai:europepmc.org:10810341 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400806 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Europe PMC (PubMed Central) |
| locations[2].source.host_organization | https://openalex.org/I1303153112 |
| locations[2].source.host_organization_name | European Bioinformatics Institute |
| locations[2].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11999024 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5022282608 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8763-3200 |
| authorships[0].author.display_name | Joshua Pickard |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210114445 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computational Medicine and Bioinformatics, University Michigan , Ann Arbor, MI , |
| authorships[0].institutions[0].id | https://openalex.org/I4210114445 |
| authorships[0].institutions[0].ror | https://ror.org/01zcpa714 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210114445 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Michigan Medicine |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Joshua Pickard |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computational Medicine and Bioinformatics, University Michigan , Ann Arbor, MI , |
| authorships[1].author.id | https://openalex.org/A5096772791 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Victoria E. Sturgess |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I27837315 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering, University Michigan , Ann Arbor, MI , |
| authorships[1].institutions[0].id | https://openalex.org/I27837315 |
| authorships[1].institutions[0].ror | https://ror.org/00jmfr291 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I27837315 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Michigan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Victoria E Sturgess |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Biomedical Engineering, University Michigan , Ann Arbor, MI , |
| authorships[2].author.id | https://openalex.org/A5084589291 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1195-7978 |
| authorships[2].author.display_name | Katherine McDonald |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Molecular and Integrative Physiology, University Michigan , Ann Arbor, MI , |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Katherine McDonald |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Molecular and Integrative Physiology, University Michigan , Ann Arbor, MI , |
| authorships[3].author.id | https://openalex.org/A5040570416 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Nicholas Rossiter |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I27837315 |
| authorships[3].affiliations[0].raw_affiliation_string | Cellular and Molecular Biology Program, University of Michigan , Ann Arbor, MI , |
| authorships[3].institutions[0].id | https://openalex.org/I27837315 |
| authorships[3].institutions[0].ror | https://ror.org/00jmfr291 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I27837315 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Michigan |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Nicholas Rossiter |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Cellular and Molecular Biology Program, University of Michigan , Ann Arbor, MI , |
| authorships[4].author.id | https://openalex.org/A5035347881 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4756-7461 |
| authorships[4].author.display_name | Kelly B. Arnold |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I27837315 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering, University Michigan , Ann Arbor, MI , |
| authorships[4].institutions[0].id | https://openalex.org/I27837315 |
| authorships[4].institutions[0].ror | https://ror.org/00jmfr291 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I27837315 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Michigan |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Kelly Arnold |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Biomedical Engineering, University Michigan , Ann Arbor, MI , |
| authorships[5].author.id | https://openalex.org/A5043313553 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2487-4816 |
| authorships[5].author.display_name | Yatrik M. Shah |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Molecular and Integrative Physiology, University Michigan , Ann Arbor, MI , |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yatrik M Shah |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Molecular and Integrative Physiology, University Michigan , Ann Arbor, MI , |
| authorships[6].author.id | https://openalex.org/A5113930123 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Indika Rajapakse |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Molecular and Integrative Physiology, University Michigan , Ann Arbor, MI , |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Indika Rajapakse |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Molecular and Integrative Physiology, University Michigan , Ann Arbor, MI , |
| authorships[7].author.id | https://openalex.org/A5054763364 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-0974-2353 |
| authorships[7].author.display_name | Daniel Beard |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Molecular and Integrative Physiology, University Michigan , Ann Arbor, MI , |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Daniel A Beard |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Molecular and Integrative Physiology, University Michigan , Ann Arbor, MI , |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://academic.oup.com/function/advance-article-pdf/doi/10.1093/function/zqaf015/62892591/zqaf015.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Hands-On Introduction to Data Analytics for Biomedical Research |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-10T02:45:41.426853 |
| primary_topic.id | https://openalex.org/T11636 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.7279000282287598 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2718 |
| primary_topic.subfield.display_name | Health Informatics |
| primary_topic.display_name | Artificial Intelligence in Healthcare and Education |
| related_works | https://openalex.org/W623382837, https://openalex.org/W2155197844, https://openalex.org/W2349226017, https://openalex.org/W2349376052, https://openalex.org/W4388543378, https://openalex.org/W2093477105, https://openalex.org/W2375628069, https://openalex.org/W2358280189, https://openalex.org/W2369522881, https://openalex.org/W1968398406 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1093/function/zqaf015 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210215692 |
| best_oa_location.source.issn | 2633-8823 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2633-8823 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Function |
| best_oa_location.source.host_organization | https://openalex.org/P4310311648 |
| best_oa_location.source.host_organization_name | Oxford University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://academic.oup.com/function/advance-article-pdf/doi/10.1093/function/zqaf015/62892591/zqaf015.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Function |
| best_oa_location.landing_page_url | https://doi.org/10.1093/function/zqaf015 |
| primary_location.id | doi:10.1093/function/zqaf015 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210215692 |
| primary_location.source.issn | 2633-8823 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2633-8823 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Function |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://academic.oup.com/function/advance-article-pdf/doi/10.1093/function/zqaf015/62892591/zqaf015.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Function |
| primary_location.landing_page_url | https://doi.org/10.1093/function/zqaf015 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W1854329019 |
| referenced_works_count | 1 |
| abstract_inverted_index.a | 51, 194 |
| abstract_inverted_index.AI | 14, 43, 64, 207 |
| abstract_inverted_index.To | 88 |
| abstract_inverted_index.as | 193 |
| abstract_inverted_index.be | 46 |
| abstract_inverted_index.by | 74 |
| abstract_inverted_index.in | 9, 20, 67, 109, 154, 186 |
| abstract_inverted_index.is | 50 |
| abstract_inverted_index.of | 34, 42, 54, 63, 77, 130, 147, 183, 206 |
| abstract_inverted_index.on | 56, 141 |
| abstract_inverted_index.or | 70 |
| abstract_inverted_index.to | 98, 171, 200 |
| abstract_inverted_index.(1) | 103 |
| abstract_inverted_index.(2) | 126 |
| abstract_inverted_index.(3) | 138 |
| abstract_inverted_index.and | 25, 32, 40, 48, 59, 85, 94, 120, 124, 137, 145, 177, 181, 208 |
| abstract_inverted_index.are | 5 |
| abstract_inverted_index.can | 45, 65 |
| abstract_inverted_index.for | 150, 165, 197 |
| abstract_inverted_index.the | 10, 30, 37, 75, 82, 131, 142, 179, 203 |
| abstract_inverted_index.use | 144 |
| abstract_inverted_index.(AI) | 3 |
| abstract_inverted_index.aims | 97 |
| abstract_inverted_index.core | 162 |
| abstract_inverted_index.data | 106, 113, 118 |
| abstract_inverted_index.many | 78 |
| abstract_inverted_index.this | 92, 159, 190 |
| abstract_inverted_index.use. | 61 |
| abstract_inverted_index.with | 81 |
| abstract_inverted_index.While | 157 |
| abstract_inverted_index.guide | 139, 160 |
| abstract_inverted_index.large | 21 |
| abstract_inverted_index.model | 122 |
| abstract_inverted_index.other | 27 |
| abstract_inverted_index.paper | 96, 191 |
| abstract_inverted_index.power | 33 |
| abstract_inverted_index.rapid | 38 |
| abstract_inverted_index.their | 57, 187 |
| abstract_inverted_index.there | 49 |
| abstract_inverted_index.these | 35, 90, 135, 152 |
| abstract_inverted_index.three | 100 |
| abstract_inverted_index.tools | 15, 149 |
| abstract_inverted_index.Modern | 13 |
| abstract_inverted_index.assess | 175 |
| abstract_inverted_index.biased | 71 |
| abstract_inverted_index.covers | 161 |
| abstract_inverted_index.enable | 16 |
| abstract_inverted_index.having | 6 |
| abstract_inverted_index.hidden | 18 |
| abstract_inverted_index.result | 66 |
| abstract_inverted_index.review | 93 |
| abstract_inverted_index.serves | 192 |
| abstract_inverted_index.tools, | 36, 176 |
| abstract_inverted_index.Despite | 29 |
| abstract_inverted_index.absence | 53 |
| abstract_inverted_index.achieve | 99 |
| abstract_inverted_index.address | 89 |
| abstract_inverted_index.ethical | 58 |
| abstract_inverted_index.explore | 178 |
| abstract_inverted_index.growing | 204 |
| abstract_inverted_index.impacts | 8 |
| abstract_inverted_index.machine | 184 |
| abstract_inverted_index.methods | 153 |
| abstract_inverted_index.missing | 117 |
| abstract_inverted_index.primary | 101 |
| abstract_inverted_index.provide | 127 |
| abstract_inverted_index.readers | 140, 170 |
| abstract_inverted_index.science | 107 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.advanced | 167 |
| abstract_inverted_index.invalid, | 68 |
| abstract_inverted_index.learning | 185 |
| abstract_inverted_index.navigate | 202 |
| abstract_inverted_index.numerous | 26 |
| abstract_inverted_index.patterns | 19 |
| abstract_inverted_index.results, | 174 |
| abstract_inverted_index.software | 148 |
| abstract_inverted_index.training | 123 |
| abstract_inverted_index.tutorial | 95 |
| abstract_inverted_index.unclear, | 69 |
| abstract_inverted_index.consensus | 55 |
| abstract_inverted_index.contexts. | 156 |
| abstract_inverted_index.datasets, | 22 |
| abstract_inverted_index.daunting, | 47 |
| abstract_inverted_index.effective | 143 |
| abstract_inverted_index.essential | 164 |
| abstract_inverted_index.expansion | 39 |
| abstract_inverted_index.highlight | 104 |
| abstract_inverted_index.including | 112 |
| abstract_inverted_index.interpret | 173 |
| abstract_inverted_index.outcomes, | 24, 72 |
| abstract_inverted_index.potential | 180 |
| abstract_inverted_index.practical | 195 |
| abstract_inverted_index.prevalent | 105 |
| abstract_inverted_index.research, | 111 |
| abstract_inverted_index.research. | 188 |
| abstract_inverted_index.sciences. | 12 |
| abstract_inverted_index.Artificial | 1 |
| abstract_inverted_index.biomedical | 11, 79, 110, 155, 198 |
| abstract_inverted_index.complexity | 41 |
| abstract_inverted_index.critically | 172 |
| abstract_inverted_index.empowering | 169 |
| abstract_inverted_index.foundation | 196 |
| abstract_inverted_index.increasing | 7 |
| abstract_inverted_index.predictive | 121 |
| abstract_inverted_index.principles | 163 |
| abstract_inverted_index.reduction, | 116 |
| abstract_inverted_index.uncovering | 17 |
| abstract_inverted_index.underlying | 83 |
| abstract_inverted_index.Ultimately, | 189 |
| abstract_inverted_index.challenges, | 91 |
| abstract_inverted_index.confidently | 201 |
| abstract_inverted_index.conspicuous | 52 |
| abstract_inverted_index.evaluation; | 125 |
| abstract_inverted_index.exacerbated | 73 |
| abstract_inverted_index.forecasting | 23 |
| abstract_inverted_index.foundations | 133 |
| abstract_inverted_index.imputation, | 119 |
| abstract_inverted_index.limitations | 182 |
| abstract_inverted_index.objectives: | 102 |
| abstract_inverted_index.principles. | 87 |
| abstract_inverted_index.researchers | 80, 199 |
| abstract_inverted_index.responsible | 60 |
| abstract_inverted_index.applications | 4, 44, 108 |
| abstract_inverted_index.availability | 31 |
| abstract_inverted_index.biomedicine. | 209 |
| abstract_inverted_index.explanations | 129 |
| abstract_inverted_index.implementing | 151 |
| abstract_inverted_index.intelligence | 2 |
| abstract_inverted_index.intersection | 205 |
| abstract_inverted_index.mathematical | 84, 132 |
| abstract_inverted_index.underpinning | 134 |
| abstract_inverted_index.applications, | 168 |
| abstract_inverted_index.applications. | 28 |
| abstract_inverted_index.computational | 86 |
| abstract_inverted_index.introductory, | 158 |
| abstract_inverted_index.understanding | 166 |
| abstract_inverted_index.unfamiliarity | 76 |
| abstract_inverted_index.Misapplication | 62 |
| abstract_inverted_index.comprehensible | 128 |
| abstract_inverted_index.dimensionality | 115 |
| abstract_inverted_index.interpretation | 146 |
| abstract_inverted_index.methodologies; | 136 |
| abstract_inverted_index.visualization, | 114 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.08103776 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |