A Heterogeneous Ensemble Approach for Travel Time Prediction Using Hybridized Feature Spaces and Support Vector Regression Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/s22249735
Travel time prediction is essential to intelligent transportation systems directly affecting smart cities and autonomous vehicles. Accurately predicting traffic based on heterogeneous factors is highly beneficial but remains a challenging problem. The literature shows significant performance improvements when traditional machine learning and deep learning models are combined using an ensemble learning approach. This research mainly contributes by proposing an ensemble learning model based on hybridized feature spaces obtained from a bidirectional long short-term memory module and a bidirectional gated recurrent unit, followed by support vector regression to produce the final travel time prediction. The proposed approach consists of three stages–initially, six state-of-the-art deep learning models are applied to traffic data obtained from sensors. Then the feature spaces and decision scores (outputs) of the model with the highest performance are fused to obtain hybridized deep feature spaces. Finally, a support vector regressor is applied to the hybridized feature spaces to get the final travel time prediction. The performance of our proposed heterogeneous ensemble using test data showed significant improvements compared to the baseline techniques in terms of the root mean square error (53.87±3.50), mean absolute error (12.22±1.35) and the coefficient of determination (0.99784±0.00019). The results demonstrated that the hybridized deep feature space concept could produce more stable and superior results than the other baseline techniques.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s22249735
- https://www.mdpi.com/1424-8220/22/24/9735/pdf?version=1670840998
- OA Status
- gold
- Cited By
- 5
- References
- 55
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4312127035
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4312127035Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s22249735Digital Object Identifier
- Title
-
A Heterogeneous Ensemble Approach for Travel Time Prediction Using Hybridized Feature Spaces and Support Vector RegressionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-12-12Full publication date if available
- Authors
-
Jawad-ur-Rehman Chughtai, Irfan Ul Haq, Saif ul Islam, Abdullah GaniList of authors in order
- Landing page
-
https://doi.org/10.3390/s22249735Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/22/24/9735/pdf?version=1670840998Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/22/24/9735/pdf?version=1670840998Direct OA link when available
- Concepts
-
Feature (linguistics), Support vector machine, Ensemble learning, Feature vector, Artificial intelligence, Computer science, Baseline (sea), Mean squared error, Deep learning, Ensemble forecasting, Regression, Machine learning, Big data, Pattern recognition (psychology), Data mining, Mathematics, Statistics, Geology, Philosophy, Oceanography, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 2, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
55Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4312127035 |
|---|---|
| doi | https://doi.org/10.3390/s22249735 |
| ids.doi | https://doi.org/10.3390/s22249735 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36560104 |
| ids.openalex | https://openalex.org/W4312127035 |
| fwci | 0.65466003 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000069550 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Machine Learning |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D013997 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Time Factors |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D000069550 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Machine Learning |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D013997 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Time Factors |
| type | article |
| title | A Heterogeneous Ensemble Approach for Travel Time Prediction Using Hybridized Feature Spaces and Support Vector Regression |
| biblio.issue | 24 |
| biblio.volume | 22 |
| biblio.last_page | 9735 |
| biblio.first_page | 9735 |
| topics[0].id | https://openalex.org/T11344 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2215 |
| topics[0].subfield.display_name | Building and Construction |
| topics[0].display_name | Traffic Prediction and Management Techniques |
| topics[1].id | https://openalex.org/T12120 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9959999918937683 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2305 |
| topics[1].subfield.display_name | Environmental Engineering |
| topics[1].display_name | Air Quality Monitoring and Forecasting |
| topics[2].id | https://openalex.org/T10698 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.9943000078201294 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3313 |
| topics[2].subfield.display_name | Transportation |
| topics[2].display_name | Transportation Planning and Optimization |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C2776401178 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6975529789924622 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[0].display_name | Feature (linguistics) |
| concepts[1].id | https://openalex.org/C12267149 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6938261985778809 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[1].display_name | Support vector machine |
| concepts[2].id | https://openalex.org/C45942800 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6685048341751099 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q245652 |
| concepts[2].display_name | Ensemble learning |
| concepts[3].id | https://openalex.org/C83665646 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6534610986709595 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q42139305 |
| concepts[3].display_name | Feature vector |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.614465594291687 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.6103141903877258 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C12725497 |
| concepts[6].level | 2 |
| concepts[6].score | 0.6028820276260376 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q810247 |
| concepts[6].display_name | Baseline (sea) |
| concepts[7].id | https://openalex.org/C139945424 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5487150549888611 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[7].display_name | Mean squared error |
| concepts[8].id | https://openalex.org/C108583219 |
| concepts[8].level | 2 |
| concepts[8].score | 0.48829078674316406 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[8].display_name | Deep learning |
| concepts[9].id | https://openalex.org/C119898033 |
| concepts[9].level | 2 |
| concepts[9].score | 0.48663005232810974 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3433888 |
| concepts[9].display_name | Ensemble forecasting |
| concepts[10].id | https://openalex.org/C83546350 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4711315333843231 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[10].display_name | Regression |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.445125550031662 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C75684735 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4400709271430969 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q858810 |
| concepts[12].display_name | Big data |
| concepts[13].id | https://openalex.org/C153180895 |
| concepts[13].level | 2 |
| concepts[13].score | 0.4336235523223877 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[13].display_name | Pattern recognition (psychology) |
| concepts[14].id | https://openalex.org/C124101348 |
| concepts[14].level | 1 |
| concepts[14].score | 0.36146315932273865 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[14].display_name | Data mining |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.1850036382675171 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C105795698 |
| concepts[16].level | 1 |
| concepts[16].score | 0.1514279544353485 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[16].display_name | Statistics |
| concepts[17].id | https://openalex.org/C127313418 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[17].display_name | Geology |
| concepts[18].id | https://openalex.org/C138885662 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[18].display_name | Philosophy |
| concepts[19].id | https://openalex.org/C111368507 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q43518 |
| concepts[19].display_name | Oceanography |
| concepts[20].id | https://openalex.org/C41895202 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[20].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/feature |
| keywords[0].score | 0.6975529789924622 |
| keywords[0].display_name | Feature (linguistics) |
| keywords[1].id | https://openalex.org/keywords/support-vector-machine |
| keywords[1].score | 0.6938261985778809 |
| keywords[1].display_name | Support vector machine |
| keywords[2].id | https://openalex.org/keywords/ensemble-learning |
| keywords[2].score | 0.6685048341751099 |
| keywords[2].display_name | Ensemble learning |
| keywords[3].id | https://openalex.org/keywords/feature-vector |
| keywords[3].score | 0.6534610986709595 |
| keywords[3].display_name | Feature vector |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.614465594291687 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.6103141903877258 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/baseline |
| keywords[6].score | 0.6028820276260376 |
| keywords[6].display_name | Baseline (sea) |
| keywords[7].id | https://openalex.org/keywords/mean-squared-error |
| keywords[7].score | 0.5487150549888611 |
| keywords[7].display_name | Mean squared error |
| keywords[8].id | https://openalex.org/keywords/deep-learning |
| keywords[8].score | 0.48829078674316406 |
| keywords[8].display_name | Deep learning |
| keywords[9].id | https://openalex.org/keywords/ensemble-forecasting |
| keywords[9].score | 0.48663005232810974 |
| keywords[9].display_name | Ensemble forecasting |
| keywords[10].id | https://openalex.org/keywords/regression |
| keywords[10].score | 0.4711315333843231 |
| keywords[10].display_name | Regression |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.445125550031662 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/big-data |
| keywords[12].score | 0.4400709271430969 |
| keywords[12].display_name | Big data |
| keywords[13].id | https://openalex.org/keywords/pattern-recognition |
| keywords[13].score | 0.4336235523223877 |
| keywords[13].display_name | Pattern recognition (psychology) |
| keywords[14].id | https://openalex.org/keywords/data-mining |
| keywords[14].score | 0.36146315932273865 |
| keywords[14].display_name | Data mining |
| keywords[15].id | https://openalex.org/keywords/mathematics |
| keywords[15].score | 0.1850036382675171 |
| keywords[15].display_name | Mathematics |
| keywords[16].id | https://openalex.org/keywords/statistics |
| keywords[16].score | 0.1514279544353485 |
| keywords[16].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.3390/s22249735 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/22/24/9735/pdf?version=1670840998 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s22249735 |
| locations[1].id | pmid:36560104 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36560104 |
| locations[2].id | pmh:oai:doaj.org/article:f5ce74aaf5e0429588b16d895ea3cf87 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 22, Iss 24, p 9735 (2022) |
| locations[2].landing_page_url | https://doaj.org/article/f5ce74aaf5e0429588b16d895ea3cf87 |
| locations[3].id | pmh:oai:mdpi.com:/1424-8220/22/24/9735/ |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400947 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | MDPI (MDPI AG) |
| locations[3].source.host_organization | https://openalex.org/I4210097602 |
| locations[3].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[3].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors; Volume 22; Issue 24; Pages: 9735 |
| locations[3].landing_page_url | https://dx.doi.org/10.3390/s22249735 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:9781256 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | other-oa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/other-oa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Sensors (Basel) |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9781256 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5008079276 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0430-4661 |
| authorships[0].author.display_name | Jawad-ur-Rehman Chughtai |
| authorships[0].countries | PK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I134276161 |
| authorships[0].affiliations[0].raw_affiliation_string | Digital Disruption Lab, DCIS, PIEAS, Islamabad 44000, Pakistan |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I134276161 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Computer and Information Sciences (DCIS), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan |
| authorships[0].institutions[0].id | https://openalex.org/I134276161 |
| authorships[0].institutions[0].ror | https://ror.org/04d4mbk19 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I134276161 |
| authorships[0].institutions[0].country_code | PK |
| authorships[0].institutions[0].display_name | Pakistan Institute of Engineering and Applied Sciences |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jawad-ur-Rehman Chughtai |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer and Information Sciences (DCIS), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan, Digital Disruption Lab, DCIS, PIEAS, Islamabad 44000, Pakistan |
| authorships[1].author.id | https://openalex.org/A5085263869 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5142-3965 |
| authorships[1].author.display_name | Irfan Ul Haq |
| authorships[1].countries | PK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I134276161 |
| authorships[1].affiliations[0].raw_affiliation_string | Digital Disruption Lab, DCIS, PIEAS, Islamabad 44000, Pakistan |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I134276161 |
| authorships[1].affiliations[1].raw_affiliation_string | Department of Computer and Information Sciences (DCIS), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan |
| authorships[1].institutions[0].id | https://openalex.org/I134276161 |
| authorships[1].institutions[0].ror | https://ror.org/04d4mbk19 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I134276161 |
| authorships[1].institutions[0].country_code | PK |
| authorships[1].institutions[0].display_name | Pakistan Institute of Engineering and Applied Sciences |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Irfan ul Haq |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer and Information Sciences (DCIS), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan, Digital Disruption Lab, DCIS, PIEAS, Islamabad 44000, Pakistan |
| authorships[2].author.id | https://openalex.org/A5035335908 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9546-4195 |
| authorships[2].author.display_name | Saif ul Islam |
| authorships[2].countries | PK |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I197827452 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science, Institute of Space Technology, Islamabad 44000, Pakistan |
| authorships[2].institutions[0].id | https://openalex.org/I197827452 |
| authorships[2].institutions[0].ror | https://ror.org/01tmmzv45 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I197827452 |
| authorships[2].institutions[0].country_code | PK |
| authorships[2].institutions[0].display_name | Institute of Space Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Saif ul Islam |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science, Institute of Space Technology, Islamabad 44000, Pakistan |
| authorships[3].author.id | https://openalex.org/A5091401182 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4388-020X |
| authorships[3].author.display_name | Abdullah Gani |
| authorships[3].countries | MY |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I161371597 |
| authorships[3].affiliations[0].raw_affiliation_string | Faculty of Computing and Informatics, University Malaysia Sabah, Labuan 88400, Malaysia |
| authorships[3].institutions[0].id | https://openalex.org/I161371597 |
| authorships[3].institutions[0].ror | https://ror.org/040v70252 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I161371597 |
| authorships[3].institutions[0].country_code | MY |
| authorships[3].institutions[0].display_name | Universiti of Malaysia Sabah |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Abdullah Gani |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Faculty of Computing and Informatics, University Malaysia Sabah, Labuan 88400, Malaysia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/22/24/9735/pdf?version=1670840998 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Heterogeneous Ensemble Approach for Travel Time Prediction Using Hybridized Feature Spaces and Support Vector Regression |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11344 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2215 |
| primary_topic.subfield.display_name | Building and Construction |
| primary_topic.display_name | Traffic Prediction and Management Techniques |
| related_works | https://openalex.org/W2794896638, https://openalex.org/W2891633941, https://openalex.org/W3202800081, https://openalex.org/W3101614107, https://openalex.org/W1909207154, https://openalex.org/W4390971112, https://openalex.org/W3036530763, https://openalex.org/W1514365828, https://openalex.org/W3204228978, https://openalex.org/W2155806188 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/s22249735 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/22/24/9735/pdf?version=1670840998 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s22249735 |
| primary_location.id | doi:10.3390/s22249735 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/22/24/9735/pdf?version=1670840998 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s22249735 |
| publication_date | 2022-12-12 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2981664222, https://openalex.org/W2144475703, https://openalex.org/W2809623940, https://openalex.org/W2344029946, https://openalex.org/W2590835266, https://openalex.org/W2907984235, https://openalex.org/W3033172001, https://openalex.org/W6779948358, https://openalex.org/W3005353079, https://openalex.org/W628224726, https://openalex.org/W2077963913, https://openalex.org/W2002033255, https://openalex.org/W3190032105, https://openalex.org/W3117031190, https://openalex.org/W2008559906, https://openalex.org/W2778869053, https://openalex.org/W2945989849, https://openalex.org/W2966819461, https://openalex.org/W2942121324, https://openalex.org/W2969876583, https://openalex.org/W2915300743, https://openalex.org/W2962834725, https://openalex.org/W2976882027, https://openalex.org/W2595642159, https://openalex.org/W3084828613, https://openalex.org/W2972581457, https://openalex.org/W2965832807, https://openalex.org/W2799109291, https://openalex.org/W2946563989, https://openalex.org/W2762384255, https://openalex.org/W2792123074, https://openalex.org/W2809128166, https://openalex.org/W3039467114, https://openalex.org/W3128242493, https://openalex.org/W4224991288, https://openalex.org/W3128586590, https://openalex.org/W3029460886, https://openalex.org/W2932292895, https://openalex.org/W2899962859, https://openalex.org/W2954107114, https://openalex.org/W2944851425, https://openalex.org/W2064675550, https://openalex.org/W3041279471, https://openalex.org/W2157331557, https://openalex.org/W3097856495, https://openalex.org/W2921319277, https://openalex.org/W1977177161, https://openalex.org/W2789876780, https://openalex.org/W2079735306, https://openalex.org/W2177066871, https://openalex.org/W2921532413, https://openalex.org/W3089815870, https://openalex.org/W3034022599, https://openalex.org/W3102272367, https://openalex.org/W3106295757 |
| referenced_works_count | 55 |
| abstract_inverted_index.a | 28, 69, 76, 137 |
| abstract_inverted_index.an | 48, 58 |
| abstract_inverted_index.by | 56, 82 |
| abstract_inverted_index.in | 173 |
| abstract_inverted_index.is | 3, 23, 141 |
| abstract_inverted_index.of | 97, 121, 157, 175, 189 |
| abstract_inverted_index.on | 20, 63 |
| abstract_inverted_index.to | 5, 86, 107, 130, 143, 148, 169 |
| abstract_inverted_index.The | 31, 93, 155, 192 |
| abstract_inverted_index.and | 13, 41, 75, 117, 186, 206 |
| abstract_inverted_index.are | 45, 105, 128 |
| abstract_inverted_index.but | 26 |
| abstract_inverted_index.get | 149 |
| abstract_inverted_index.our | 158 |
| abstract_inverted_index.six | 100 |
| abstract_inverted_index.the | 88, 114, 122, 125, 144, 150, 170, 176, 187, 196, 210 |
| abstract_inverted_index.Then | 113 |
| abstract_inverted_index.This | 52 |
| abstract_inverted_index.data | 109, 164 |
| abstract_inverted_index.deep | 42, 102, 133, 198 |
| abstract_inverted_index.from | 68, 111 |
| abstract_inverted_index.long | 71 |
| abstract_inverted_index.mean | 178, 182 |
| abstract_inverted_index.more | 204 |
| abstract_inverted_index.root | 177 |
| abstract_inverted_index.test | 163 |
| abstract_inverted_index.than | 209 |
| abstract_inverted_index.that | 195 |
| abstract_inverted_index.time | 1, 91, 153 |
| abstract_inverted_index.when | 37 |
| abstract_inverted_index.with | 124 |
| abstract_inverted_index.based | 19, 62 |
| abstract_inverted_index.could | 202 |
| abstract_inverted_index.error | 180, 184 |
| abstract_inverted_index.final | 89, 151 |
| abstract_inverted_index.fused | 129 |
| abstract_inverted_index.gated | 78 |
| abstract_inverted_index.model | 61, 123 |
| abstract_inverted_index.other | 211 |
| abstract_inverted_index.shows | 33 |
| abstract_inverted_index.smart | 11 |
| abstract_inverted_index.space | 200 |
| abstract_inverted_index.terms | 174 |
| abstract_inverted_index.three | 98 |
| abstract_inverted_index.unit, | 80 |
| abstract_inverted_index.using | 47, 162 |
| abstract_inverted_index.Travel | 0 |
| abstract_inverted_index.cities | 12 |
| abstract_inverted_index.highly | 24 |
| abstract_inverted_index.mainly | 54 |
| abstract_inverted_index.memory | 73 |
| abstract_inverted_index.models | 44, 104 |
| abstract_inverted_index.module | 74 |
| abstract_inverted_index.obtain | 131 |
| abstract_inverted_index.scores | 119 |
| abstract_inverted_index.showed | 165 |
| abstract_inverted_index.spaces | 66, 116, 147 |
| abstract_inverted_index.square | 179 |
| abstract_inverted_index.stable | 205 |
| abstract_inverted_index.travel | 90, 152 |
| abstract_inverted_index.vector | 84, 139 |
| abstract_inverted_index.applied | 106, 142 |
| abstract_inverted_index.concept | 201 |
| abstract_inverted_index.factors | 22 |
| abstract_inverted_index.feature | 65, 115, 134, 146, 199 |
| abstract_inverted_index.highest | 126 |
| abstract_inverted_index.machine | 39 |
| abstract_inverted_index.produce | 87, 203 |
| abstract_inverted_index.remains | 27 |
| abstract_inverted_index.results | 193, 208 |
| abstract_inverted_index.spaces. | 135 |
| abstract_inverted_index.support | 83, 138 |
| abstract_inverted_index.systems | 8 |
| abstract_inverted_index.traffic | 18, 108 |
| abstract_inverted_index.Finally, | 136 |
| abstract_inverted_index.absolute | 183 |
| abstract_inverted_index.approach | 95 |
| abstract_inverted_index.baseline | 171, 212 |
| abstract_inverted_index.combined | 46 |
| abstract_inverted_index.compared | 168 |
| abstract_inverted_index.consists | 96 |
| abstract_inverted_index.decision | 118 |
| abstract_inverted_index.directly | 9 |
| abstract_inverted_index.ensemble | 49, 59, 161 |
| abstract_inverted_index.followed | 81 |
| abstract_inverted_index.learning | 40, 43, 50, 60, 103 |
| abstract_inverted_index.obtained | 67, 110 |
| abstract_inverted_index.problem. | 30 |
| abstract_inverted_index.proposed | 94, 159 |
| abstract_inverted_index.research | 53 |
| abstract_inverted_index.sensors. | 112 |
| abstract_inverted_index.superior | 207 |
| abstract_inverted_index.(outputs) | 120 |
| abstract_inverted_index.affecting | 10 |
| abstract_inverted_index.approach. | 51 |
| abstract_inverted_index.essential | 4 |
| abstract_inverted_index.proposing | 57 |
| abstract_inverted_index.recurrent | 79 |
| abstract_inverted_index.regressor | 140 |
| abstract_inverted_index.vehicles. | 15 |
| abstract_inverted_index.Accurately | 16 |
| abstract_inverted_index.autonomous | 14 |
| abstract_inverted_index.beneficial | 25 |
| abstract_inverted_index.hybridized | 64, 132, 145, 197 |
| abstract_inverted_index.literature | 32 |
| abstract_inverted_index.predicting | 17 |
| abstract_inverted_index.prediction | 2 |
| abstract_inverted_index.regression | 85 |
| abstract_inverted_index.short-term | 72 |
| abstract_inverted_index.techniques | 172 |
| abstract_inverted_index.challenging | 29 |
| abstract_inverted_index.coefficient | 188 |
| abstract_inverted_index.contributes | 55 |
| abstract_inverted_index.intelligent | 6 |
| abstract_inverted_index.performance | 35, 127, 156 |
| abstract_inverted_index.prediction. | 92, 154 |
| abstract_inverted_index.significant | 34, 166 |
| abstract_inverted_index.techniques. | 213 |
| abstract_inverted_index.traditional | 38 |
| abstract_inverted_index.demonstrated | 194 |
| abstract_inverted_index.improvements | 36, 167 |
| abstract_inverted_index.(12.22±1.35) | 185 |
| abstract_inverted_index.bidirectional | 70, 77 |
| abstract_inverted_index.determination | 190 |
| abstract_inverted_index.heterogeneous | 21, 160 |
| abstract_inverted_index.(53.87±3.50), | 181 |
| abstract_inverted_index.transportation | 7 |
| abstract_inverted_index.state-of-the-art | 101 |
| abstract_inverted_index.(0.99784±0.00019). | 191 |
| abstract_inverted_index.stages–initially, | 99 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5091401182 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I161371597 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.7200000286102295 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.64267494 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |