A Heuristic Approach to the Strong Goldbach Conjecture Based on a Minimum Additive Prime Product Principle Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.20944/preprints202507.1523.v1
This paper presents a heuristic exploration of the Strong Goldbach Conjecture from an optimization principle perspective. We postulate that the representation of an even number n as a sum of primes pi is governed by an "additive effort," defined as the sum of the natural logarithms of its prime components, E = ∑ ln(pi). This metric is mathematically equivalent to minimizing the product of these primes. An exhaustive computational analysis was performed for all even numbers in the range 4 < n ≤ 10, 000. Within this range, it was verified that, for n ≥ 8, the Goldbach partition (n = p1 + p2) consistently minimizes this effort function. A unique exception was identified at n = 6, where the minimum effort is achieved with the partition 2 + 2 + 2. This work does not constitute a formal proof but offers a conceptual framework and numerical evidence suggesting that the two-prime solution is not only possible but optimal under this minimization principle for most even numbers.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.20944/preprints202507.1523.v1
- https://www.preprints.org/frontend/manuscript/7bc78385d3e6d39a248d8364bd68c8b2/download_pub
- OA Status
- green
- References
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412502423
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412502423Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.20944/preprints202507.1523.v1Digital Object Identifier
- Title
-
A Heuristic Approach to the Strong Goldbach Conjecture Based on a Minimum Additive Prime Product PrincipleWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-18Full publication date if available
- Authors
-
Ricardo Adonis Caraccioli AbregoList of authors in order
- Landing page
-
https://doi.org/10.20944/preprints202507.1523.v1Publisher landing page
- PDF URL
-
https://www.preprints.org/frontend/manuscript/7bc78385d3e6d39a248d8364bd68c8b2/download_pubDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.preprints.org/frontend/manuscript/7bc78385d3e6d39a248d8364bd68c8b2/download_pubDirect OA link when available
- Concepts
-
Goldbach's conjecture, Prime (order theory), Heuristic, Product (mathematics), Conjecture, Mathematics, Combinatorics, Computer science, Mathematical optimization, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
3Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412502423 |
|---|---|
| doi | https://doi.org/10.20944/preprints202507.1523.v1 |
| ids.doi | https://doi.org/10.20944/preprints202507.1523.v1 |
| ids.openalex | https://openalex.org/W4412502423 |
| fwci | 0.0 |
| type | preprint |
| title | A Heuristic Approach to the Strong Goldbach Conjecture Based on a Minimum Additive Prime Product Principle |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10849 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9218999743461609 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2607 |
| topics[0].subfield.display_name | Discrete Mathematics and Combinatorics |
| topics[0].display_name | Finite Group Theory Research |
| topics[1].id | https://openalex.org/T11166 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9089000225067139 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2602 |
| topics[1].subfield.display_name | Algebra and Number Theory |
| topics[1].display_name | Analytic Number Theory Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C143732363 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8256670236587524 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q485520 |
| concepts[0].display_name | Goldbach's conjecture |
| concepts[1].id | https://openalex.org/C184992742 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7487446665763855 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7243229 |
| concepts[1].display_name | Prime (order theory) |
| concepts[2].id | https://openalex.org/C173801870 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6944981813430786 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q201413 |
| concepts[2].display_name | Heuristic |
| concepts[3].id | https://openalex.org/C90673727 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6622655391693115 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q901718 |
| concepts[3].display_name | Product (mathematics) |
| concepts[4].id | https://openalex.org/C2780990831 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5736310482025146 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q319141 |
| concepts[4].display_name | Conjecture |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5117756724357605 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C114614502 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4331366717815399 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[6].display_name | Combinatorics |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.3539145588874817 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C126255220 |
| concepts[8].level | 1 |
| concepts[8].score | 0.24863198399543762 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[8].display_name | Mathematical optimization |
| concepts[9].id | https://openalex.org/C2524010 |
| concepts[9].level | 1 |
| concepts[9].score | 0.07775506377220154 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[9].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/goldbachs-conjecture |
| keywords[0].score | 0.8256670236587524 |
| keywords[0].display_name | Goldbach's conjecture |
| keywords[1].id | https://openalex.org/keywords/prime |
| keywords[1].score | 0.7487446665763855 |
| keywords[1].display_name | Prime (order theory) |
| keywords[2].id | https://openalex.org/keywords/heuristic |
| keywords[2].score | 0.6944981813430786 |
| keywords[2].display_name | Heuristic |
| keywords[3].id | https://openalex.org/keywords/product |
| keywords[3].score | 0.6622655391693115 |
| keywords[3].display_name | Product (mathematics) |
| keywords[4].id | https://openalex.org/keywords/conjecture |
| keywords[4].score | 0.5736310482025146 |
| keywords[4].display_name | Conjecture |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.5117756724357605 |
| keywords[5].display_name | Mathematics |
| keywords[6].id | https://openalex.org/keywords/combinatorics |
| keywords[6].score | 0.4331366717815399 |
| keywords[6].display_name | Combinatorics |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.3539145588874817 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[8].score | 0.24863198399543762 |
| keywords[8].display_name | Mathematical optimization |
| keywords[9].id | https://openalex.org/keywords/geometry |
| keywords[9].score | 0.07775506377220154 |
| keywords[9].display_name | Geometry |
| language | en |
| locations[0].id | doi:10.20944/preprints202507.1523.v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S6309402219 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Preprints.org |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.preprints.org/frontend/manuscript/7bc78385d3e6d39a248d8364bd68c8b2/download_pub |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.20944/preprints202507.1523.v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5118646189 |
| authorships[0].author.orcid | https://orcid.org/0009-0006-3522-5818 |
| authorships[0].author.display_name | Ricardo Adonis Caraccioli Abrego |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ricardo Adonis Caraccioli Abrego |
| authorships[0].is_corresponding | True |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.preprints.org/frontend/manuscript/7bc78385d3e6d39a248d8364bd68c8b2/download_pub |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Heuristic Approach to the Strong Goldbach Conjecture Based on a Minimum Additive Prime Product Principle |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10849 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9218999743461609 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2607 |
| primary_topic.subfield.display_name | Discrete Mathematics and Combinatorics |
| primary_topic.display_name | Finite Group Theory Research |
| related_works | https://openalex.org/W3195011978, https://openalex.org/W4206715184, https://openalex.org/W4328052772, https://openalex.org/W4231989170, https://openalex.org/W6389680, https://openalex.org/W1497177890, https://openalex.org/W4234377061, https://openalex.org/W2993284054, https://openalex.org/W2950745712, https://openalex.org/W4301846246 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.20944/preprints202507.1523.v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S6309402219 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Preprints.org |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.preprints.org/frontend/manuscript/7bc78385d3e6d39a248d8364bd68c8b2/download_pub |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.20944/preprints202507.1523.v1 |
| primary_location.id | doi:10.20944/preprints202507.1523.v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S6309402219 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Preprints.org |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.preprints.org/frontend/manuscript/7bc78385d3e6d39a248d8364bd68c8b2/download_pub |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.20944/preprints202507.1523.v1 |
| publication_date | 2025-07-18 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W6648982606, https://openalex.org/W6634018283, https://openalex.org/W6607613483 |
| referenced_works_count | 3 |
| abstract_inverted_index.+ | 102, 128, 130 |
| abstract_inverted_index.2 | 127, 129 |
| abstract_inverted_index.4 | 79 |
| abstract_inverted_index.= | 51, 100, 116 |
| abstract_inverted_index.A | 109 |
| abstract_inverted_index.E | 50 |
| abstract_inverted_index.a | 3, 27, 137, 142 |
| abstract_inverted_index.n | 25, 81, 93, 115 |
| abstract_inverted_index.(n | 99 |
| abstract_inverted_index.2. | 131 |
| abstract_inverted_index.6, | 117 |
| abstract_inverted_index.8, | 95 |
| abstract_inverted_index.An | 66 |
| abstract_inverted_index.We | 16 |
| abstract_inverted_index.an | 12, 22, 35 |
| abstract_inverted_index.as | 26, 39 |
| abstract_inverted_index.at | 114 |
| abstract_inverted_index.by | 34 |
| abstract_inverted_index.in | 76 |
| abstract_inverted_index.is | 32, 56, 122, 153 |
| abstract_inverted_index.it | 88 |
| abstract_inverted_index.of | 6, 21, 29, 42, 46, 63 |
| abstract_inverted_index.p1 | 101 |
| abstract_inverted_index.pi | 31 |
| abstract_inverted_index.to | 59 |
| abstract_inverted_index.10, | 83 |
| abstract_inverted_index.all | 73 |
| abstract_inverted_index.and | 145 |
| abstract_inverted_index.but | 140, 157 |
| abstract_inverted_index.for | 72, 92, 163 |
| abstract_inverted_index.its | 47 |
| abstract_inverted_index.not | 135, 154 |
| abstract_inverted_index.p2) | 103 |
| abstract_inverted_index.sum | 28, 41 |
| abstract_inverted_index.the | 7, 19, 40, 43, 61, 77, 96, 119, 125, 150 |
| abstract_inverted_index.was | 70, 89, 112 |
| abstract_inverted_index.∑ | 52 |
| abstract_inverted_index.≤ | 82 |
| abstract_inverted_index.≥ | 94 |
| abstract_inverted_index.000. | 84 |
| abstract_inverted_index.This | 0, 54, 132 |
| abstract_inverted_index.does | 134 |
| abstract_inverted_index.even | 23, 74, 165 |
| abstract_inverted_index.from | 11 |
| abstract_inverted_index.most | 164 |
| abstract_inverted_index.only | 155 |
| abstract_inverted_index.that | 18, 149 |
| abstract_inverted_index.this | 86, 106, 160 |
| abstract_inverted_index.with | 124 |
| abstract_inverted_index.work | 133 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.prime | 48 |
| abstract_inverted_index.proof | 139 |
| abstract_inverted_index.range | 78 |
| abstract_inverted_index.that, | 91 |
| abstract_inverted_index.these | 64 |
| abstract_inverted_index.under | 159 |
| abstract_inverted_index.where | 118 |
| abstract_inverted_index.Strong | 8 |
| abstract_inverted_index.Within | 85 |
| abstract_inverted_index.effort | 107, 121 |
| abstract_inverted_index.formal | 138 |
| abstract_inverted_index.metric | 55 |
| abstract_inverted_index.number | 24 |
| abstract_inverted_index.offers | 141 |
| abstract_inverted_index.primes | 30 |
| abstract_inverted_index.range, | 87 |
| abstract_inverted_index.unique | 110 |
| abstract_inverted_index.defined | 38 |
| abstract_inverted_index.ln(pi). | 53 |
| abstract_inverted_index.minimum | 120 |
| abstract_inverted_index.natural | 44 |
| abstract_inverted_index.numbers | 75 |
| abstract_inverted_index.optimal | 158 |
| abstract_inverted_index.primes. | 65 |
| abstract_inverted_index.product | 62 |
| abstract_inverted_index.&lt; | 80 |
| abstract_inverted_index.Goldbach | 9, 97 |
| abstract_inverted_index.achieved | 123 |
| abstract_inverted_index.analysis | 69 |
| abstract_inverted_index.effort," | 37 |
| abstract_inverted_index.evidence | 147 |
| abstract_inverted_index.governed | 33 |
| abstract_inverted_index.numbers. | 166 |
| abstract_inverted_index.possible | 156 |
| abstract_inverted_index.presents | 2 |
| abstract_inverted_index.solution | 152 |
| abstract_inverted_index.verified | 90 |
| abstract_inverted_index."additive | 36 |
| abstract_inverted_index.exception | 111 |
| abstract_inverted_index.framework | 144 |
| abstract_inverted_index.function. | 108 |
| abstract_inverted_index.heuristic | 4 |
| abstract_inverted_index.minimizes | 105 |
| abstract_inverted_index.numerical | 146 |
| abstract_inverted_index.partition | 98, 126 |
| abstract_inverted_index.performed | 71 |
| abstract_inverted_index.postulate | 17 |
| abstract_inverted_index.principle | 14, 162 |
| abstract_inverted_index.two-prime | 151 |
| abstract_inverted_index.Conjecture | 10 |
| abstract_inverted_index.conceptual | 143 |
| abstract_inverted_index.constitute | 136 |
| abstract_inverted_index.equivalent | 58 |
| abstract_inverted_index.exhaustive | 67 |
| abstract_inverted_index.identified | 113 |
| abstract_inverted_index.logarithms | 45 |
| abstract_inverted_index.minimizing | 60 |
| abstract_inverted_index.suggesting | 148 |
| abstract_inverted_index.components, | 49 |
| abstract_inverted_index.exploration | 5 |
| abstract_inverted_index.consistently | 104 |
| abstract_inverted_index.minimization | 161 |
| abstract_inverted_index.optimization | 13 |
| abstract_inverted_index.perspective. | 15 |
| abstract_inverted_index.computational | 68 |
| abstract_inverted_index.mathematically | 57 |
| abstract_inverted_index.representation | 20 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5118646189 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile.value | 0.31633617 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |