A Hierarchical Adaptive Moment Matching Multiple Model Tracking Method for Hypersonic Glide Target Under Measurement Uncertainty Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/s25216621
Hypersonic glide targets (HGTs) pose significant challenges for radar tracking due to complex maneuver strategies and time-varying statistics of measurement noise. Conventional single-model tracking methods are generally insufficient to fully capture maneuver modes, while existing multiple-model methods face trade-offs between model set completeness and computational efficiency. In addition, existing tracking methods struggle to cope with the non-Gaussian noise during hypersonic flight. To overcome these limitations, a Hierarchical Adaptive Moment Matching (HAMM) multiple-model method is proposed in this paper. Firstly, a comprehensive model set is constructed to cover characteristic maneuver modes. Subsequently, a hierarchical multiple-model framework is developed where: (1) a coarse model set is dynamically adapted by multi-frame posterior probability evolution and Rényi divergence criteria; (2) a fine model set is generated based on the moment matching method. Furthermore, the minimum error entropy cubature Kalman filter (MEECKF) is proposed to suppress the non-Gaussian measurement noise with high stability. Monte Carlo simulations demonstrate that the proposed method achieves improved positioning accuracy and faster convergence.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s25216621
- https://www.mdpi.com/1424-8220/25/21/6621/pdf?version=1761651535
- OA Status
- gold
- References
- 40
- OpenAlex ID
- https://openalex.org/W4415650150
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415650150Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s25216621Digital Object Identifier
- Title
-
A Hierarchical Adaptive Moment Matching Multiple Model Tracking Method for Hypersonic Glide Target Under Measurement UncertaintyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-28Full publication date if available
- Authors
-
Hanxing Shao, Jibin Zheng, Yulong Bai, Hongwei Liu, Y. L. Ge, Boyang LiuList of authors in order
- Landing page
-
https://doi.org/10.3390/s25216621Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/25/21/6621/pdf?version=1761651535Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/25/21/6621/pdf?version=1761651535Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
40Number of works referenced by this work
Full payload
| id | https://openalex.org/W4415650150 |
|---|---|
| doi | https://doi.org/10.3390/s25216621 |
| ids.doi | https://doi.org/10.3390/s25216621 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/41228843 |
| ids.openalex | https://openalex.org/W4415650150 |
| fwci | |
| type | article |
| title | A Hierarchical Adaptive Moment Matching Multiple Model Tracking Method for Hypersonic Glide Target Under Measurement Uncertainty |
| biblio.issue | 21 |
| biblio.volume | 25 |
| biblio.last_page | 6621 |
| biblio.first_page | 6621 |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| language | en |
| locations[0].id | doi:10.3390/s25216621 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/25/21/6621/pdf?version=1761651535 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s25216621 |
| locations[1].id | pmid:41228843 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/41228843 |
| locations[2].id | pmh:oai:doaj.org/article:ffa710b9ce094239ab36e6625074f263 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 25, Iss 21, p 6621 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/ffa710b9ce094239ab36e6625074f263 |
| locations[3].id | pmh:oai:europepmc.org:11415439 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12610629 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5102224000 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Hanxing Shao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[0].affiliations[0].raw_affiliation_string | National Key Laboratory of Radar Signal Processing, Xidian University, Xi'an 710071, China |
| authorships[0].institutions[0].id | https://openalex.org/I149594827 |
| authorships[0].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Xidian University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hanxing Shao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | National Key Laboratory of Radar Signal Processing, Xidian University, Xi'an 710071, China |
| authorships[1].author.id | https://openalex.org/A5100633345 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7144-8388 |
| authorships[1].author.display_name | Jibin Zheng |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[1].affiliations[0].raw_affiliation_string | National Key Laboratory of Radar Signal Processing, Xidian University, Xi'an 710071, China |
| authorships[1].institutions[0].id | https://openalex.org/I149594827 |
| authorships[1].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Xidian University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jibin Zheng |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | National Key Laboratory of Radar Signal Processing, Xidian University, Xi'an 710071, China |
| authorships[2].author.id | https://openalex.org/A5026108247 |
| authorships[2].author.orcid | https://orcid.org/0009-0001-7106-8518 |
| authorships[2].author.display_name | Yulong Bai |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[2].affiliations[0].raw_affiliation_string | National Key Laboratory of Radar Signal Processing, Xidian University, Xi'an 710071, China |
| authorships[2].institutions[0].id | https://openalex.org/I149594827 |
| authorships[2].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Xidian University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yanwen Bai |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | National Key Laboratory of Radar Signal Processing, Xidian University, Xi'an 710071, China |
| authorships[3].author.id | https://openalex.org/A5100411968 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4046-163X |
| authorships[3].author.display_name | Hongwei Liu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[3].affiliations[0].raw_affiliation_string | National Key Laboratory of Radar Signal Processing, Xidian University, Xi'an 710071, China |
| authorships[3].institutions[0].id | https://openalex.org/I149594827 |
| authorships[3].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Xidian University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hongwei Liu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | National Key Laboratory of Radar Signal Processing, Xidian University, Xi'an 710071, China |
| authorships[4].author.id | https://openalex.org/A5108874816 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Y. L. Ge |
| authorships[4].affiliations[0].raw_affiliation_string | Reentry Dynamics and Target Characteristic Laboratory, Unit 63610, People's Liberation Army of China, Korla 841001, China |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ye Ge |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Reentry Dynamics and Target Characteristic Laboratory, Unit 63610, People's Liberation Army of China, Korla 841001, China |
| authorships[5].author.id | https://openalex.org/A5100387890 |
| authorships[5].author.orcid | https://orcid.org/0009-0006-8570-4681 |
| authorships[5].author.display_name | Boyang Liu |
| authorships[5].affiliations[0].raw_affiliation_string | Reentry Dynamics and Target Characteristic Laboratory, Unit 63610, People's Liberation Army of China, Korla 841001, China |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Boyang Liu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Reentry Dynamics and Target Characteristic Laboratory, Unit 63610, People's Liberation Army of China, Korla 841001, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/25/21/6621/pdf?version=1761651535 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-29T00:00:00 |
| display_name | A Hierarchical Adaptive Moment Matching Multiple Model Tracking Method for Hypersonic Glide Target Under Measurement Uncertainty |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/s25216621 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/25/21/6621/pdf?version=1761651535 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s25216621 |
| primary_location.id | doi:10.3390/s25216621 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/25/21/6621/pdf?version=1761651535 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s25216621 |
| publication_date | 2025-10-28 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W1970086987, https://openalex.org/W4323034278, https://openalex.org/W3206494158, https://openalex.org/W4401655743, https://openalex.org/W4411176236, https://openalex.org/W2140242774, https://openalex.org/W2911090933, https://openalex.org/W2917169906, https://openalex.org/W3123979359, https://openalex.org/W2103632679, https://openalex.org/W623564636, https://openalex.org/W2904668693, https://openalex.org/W4306362471, https://openalex.org/W2981356262, https://openalex.org/W2767030697, https://openalex.org/W2063695849, https://openalex.org/W2056121575, https://openalex.org/W2161177697, https://openalex.org/W2105451692, https://openalex.org/W2127201433, https://openalex.org/W2344510161, https://openalex.org/W1964434972, https://openalex.org/W4392559322, https://openalex.org/W2121990344, https://openalex.org/W2074492975, https://openalex.org/W2054091988, https://openalex.org/W2997297215, https://openalex.org/W2143030612, https://openalex.org/W2094385794, https://openalex.org/W2737188128, https://openalex.org/W4226141446, https://openalex.org/W4406890311, https://openalex.org/W4255133955, https://openalex.org/W2143737806, https://openalex.org/W2148061324, https://openalex.org/W2561829981, https://openalex.org/W2026581470, https://openalex.org/W3127483027, https://openalex.org/W3112682751, https://openalex.org/W2930607690 |
| referenced_works_count | 40 |
| abstract_inverted_index.a | 65, 79, 91, 99, 116 |
| abstract_inverted_index.In | 46 |
| abstract_inverted_index.To | 61 |
| abstract_inverted_index.by | 106 |
| abstract_inverted_index.in | 75 |
| abstract_inverted_index.is | 73, 83, 95, 103, 120, 137 |
| abstract_inverted_index.of | 18 |
| abstract_inverted_index.on | 123 |
| abstract_inverted_index.to | 11, 28, 52, 85, 139 |
| abstract_inverted_index.(1) | 98 |
| abstract_inverted_index.(2) | 115 |
| abstract_inverted_index.and | 15, 43, 111, 160 |
| abstract_inverted_index.are | 25 |
| abstract_inverted_index.due | 10 |
| abstract_inverted_index.for | 7 |
| abstract_inverted_index.set | 41, 82, 102, 119 |
| abstract_inverted_index.the | 55, 124, 129, 141, 153 |
| abstract_inverted_index.cope | 53 |
| abstract_inverted_index.face | 37 |
| abstract_inverted_index.fine | 117 |
| abstract_inverted_index.high | 146 |
| abstract_inverted_index.pose | 4 |
| abstract_inverted_index.that | 152 |
| abstract_inverted_index.this | 76 |
| abstract_inverted_index.with | 54, 145 |
| abstract_inverted_index.Carlo | 149 |
| abstract_inverted_index.Monte | 148 |
| abstract_inverted_index.based | 122 |
| abstract_inverted_index.cover | 86 |
| abstract_inverted_index.error | 131 |
| abstract_inverted_index.fully | 29 |
| abstract_inverted_index.glide | 1 |
| abstract_inverted_index.model | 40, 81, 101, 118 |
| abstract_inverted_index.noise | 57, 144 |
| abstract_inverted_index.radar | 8 |
| abstract_inverted_index.these | 63 |
| abstract_inverted_index.while | 33 |
| abstract_inverted_index.(HAMM) | 70 |
| abstract_inverted_index.(HGTs) | 3 |
| abstract_inverted_index.Kalman | 134 |
| abstract_inverted_index.Moment | 68 |
| abstract_inverted_index.Rényi | 112 |
| abstract_inverted_index.coarse | 100 |
| abstract_inverted_index.during | 58 |
| abstract_inverted_index.faster | 161 |
| abstract_inverted_index.filter | 135 |
| abstract_inverted_index.method | 72, 155 |
| abstract_inverted_index.modes, | 32 |
| abstract_inverted_index.modes. | 89 |
| abstract_inverted_index.moment | 125 |
| abstract_inverted_index.noise. | 20 |
| abstract_inverted_index.paper. | 77 |
| abstract_inverted_index.where: | 97 |
| abstract_inverted_index.adapted | 105 |
| abstract_inverted_index.between | 39 |
| abstract_inverted_index.capture | 30 |
| abstract_inverted_index.complex | 12 |
| abstract_inverted_index.entropy | 132 |
| abstract_inverted_index.flight. | 60 |
| abstract_inverted_index.method. | 127 |
| abstract_inverted_index.methods | 24, 36, 50 |
| abstract_inverted_index.minimum | 130 |
| abstract_inverted_index.targets | 2 |
| abstract_inverted_index.(MEECKF) | 136 |
| abstract_inverted_index.Adaptive | 67 |
| abstract_inverted_index.Firstly, | 78 |
| abstract_inverted_index.Matching | 69 |
| abstract_inverted_index.accuracy | 159 |
| abstract_inverted_index.achieves | 156 |
| abstract_inverted_index.cubature | 133 |
| abstract_inverted_index.existing | 34, 48 |
| abstract_inverted_index.improved | 157 |
| abstract_inverted_index.maneuver | 13, 31, 88 |
| abstract_inverted_index.matching | 126 |
| abstract_inverted_index.overcome | 62 |
| abstract_inverted_index.proposed | 74, 138, 154 |
| abstract_inverted_index.struggle | 51 |
| abstract_inverted_index.suppress | 140 |
| abstract_inverted_index.tracking | 9, 23, 49 |
| abstract_inverted_index.addition, | 47 |
| abstract_inverted_index.criteria; | 114 |
| abstract_inverted_index.developed | 96 |
| abstract_inverted_index.evolution | 110 |
| abstract_inverted_index.framework | 94 |
| abstract_inverted_index.generally | 26 |
| abstract_inverted_index.generated | 121 |
| abstract_inverted_index.posterior | 108 |
| abstract_inverted_index.Hypersonic | 0 |
| abstract_inverted_index.challenges | 6 |
| abstract_inverted_index.divergence | 113 |
| abstract_inverted_index.hypersonic | 59 |
| abstract_inverted_index.stability. | 147 |
| abstract_inverted_index.statistics | 17 |
| abstract_inverted_index.strategies | 14 |
| abstract_inverted_index.trade-offs | 38 |
| abstract_inverted_index.constructed | 84 |
| abstract_inverted_index.demonstrate | 151 |
| abstract_inverted_index.dynamically | 104 |
| abstract_inverted_index.efficiency. | 45 |
| abstract_inverted_index.measurement | 19, 143 |
| abstract_inverted_index.multi-frame | 107 |
| abstract_inverted_index.positioning | 158 |
| abstract_inverted_index.probability | 109 |
| abstract_inverted_index.significant | 5 |
| abstract_inverted_index.simulations | 150 |
| abstract_inverted_index.Conventional | 21 |
| abstract_inverted_index.Furthermore, | 128 |
| abstract_inverted_index.Hierarchical | 66 |
| abstract_inverted_index.completeness | 42 |
| abstract_inverted_index.convergence. | 162 |
| abstract_inverted_index.hierarchical | 92 |
| abstract_inverted_index.insufficient | 27 |
| abstract_inverted_index.limitations, | 64 |
| abstract_inverted_index.non-Gaussian | 56, 142 |
| abstract_inverted_index.single-model | 22 |
| abstract_inverted_index.time-varying | 16 |
| abstract_inverted_index.Subsequently, | 90 |
| abstract_inverted_index.comprehensive | 80 |
| abstract_inverted_index.computational | 44 |
| abstract_inverted_index.characteristic | 87 |
| abstract_inverted_index.multiple-model | 35, 71, 93 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5100633345 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I149594827 |
| citation_normalized_percentile |