A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags Article Swipe
YOU?
·
· 2016
· Open Access
·
· DOI: https://doi.org/10.7717/peerj.1727
Water temperature is a primary driver of stream ecosystems and commonly forms the basis of stream classifications. Robust models of stream temperature are critical as the climate changes, but estimating daily stream temperature poses several important challenges. We developed a statistical model that accounts for many challenges that can make stream temperature estimation difficult. Our model identifies the yearly period when air and water temperature are synchronized, accommodates hysteresis, incorporates time lags, deals with missing data and autocorrelation and can include external drivers. In a small stream network, the model performed well (RMSE = 0.59°C), identified a clear warming trend (0.63 °C decade −1 ) and a widening of the synchronized period (29 d decade −1 ). We also carefully evaluated how missing data influenced predictions. Missing data within a year had a small effect on performance (∼0.05% average drop in RMSE with 10% fewer days with data). Missing all data for a year decreased performance (∼0.6 °C jump in RMSE), but this decrease was moderated when data were available from other streams in the network.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.7717/peerj.1727
- OA Status
- gold
- Cited By
- 101
- References
- 80
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2193606319
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2193606319Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.7717/peerj.1727Digital Object Identifier
- Title
-
A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lagsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2016Year of publication
- Publication date
-
2016-02-29Full publication date if available
- Authors
-
Benjamin H. Letcher, Daniel J. Hocking, Kyle O’Neil, Andrew R. Whiteley, Keith H. Nislow, Matthew J. O’DonnellList of authors in order
- Landing page
-
https://doi.org/10.7717/peerj.1727Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.7717/peerj.1727Direct OA link when available
- Concepts
-
Autocorrelation, Missing data, Mean squared error, Environmental science, Air temperature, STREAMS, Climate change, Meteorology, Statistics, Computer science, Mathematics, Geography, Ecology, Biology, Computer networkTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
101Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 10, 2024: 12, 2023: 13, 2022: 10, 2021: 13Per-year citation counts (last 5 years)
- References (count)
-
80Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2193606319 |
|---|---|
| doi | https://doi.org/10.7717/peerj.1727 |
| ids.doi | https://doi.org/10.7717/peerj.1727 |
| ids.mag | 2193606319 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/26966662 |
| ids.openalex | https://openalex.org/W2193606319 |
| fwci | 10.13952524 |
| type | article |
| title | A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags |
| biblio.issue | |
| biblio.volume | 4 |
| biblio.last_page | e1727 |
| biblio.first_page | e1727 |
| topics[0].id | https://openalex.org/T10302 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2309 |
| topics[0].subfield.display_name | Nature and Landscape Conservation |
| topics[0].display_name | Fish Ecology and Management Studies |
| topics[1].id | https://openalex.org/T10330 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9991999864578247 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2312 |
| topics[1].subfield.display_name | Water Science and Technology |
| topics[1].display_name | Hydrology and Watershed Management Studies |
| topics[2].id | https://openalex.org/T11490 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9973999857902527 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2305 |
| topics[2].subfield.display_name | Environmental Engineering |
| topics[2].display_name | Hydrological Forecasting Using AI |
| is_xpac | False |
| apc_list.value | 1395 |
| apc_list.currency | USD |
| apc_list.value_usd | 1395 |
| apc_paid.value | 1395 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1395 |
| concepts[0].id | https://openalex.org/C5297727 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7113404273986816 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q786970 |
| concepts[0].display_name | Autocorrelation |
| concepts[1].id | https://openalex.org/C9357733 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6171559691429138 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6878417 |
| concepts[1].display_name | Missing data |
| concepts[2].id | https://openalex.org/C139945424 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5735281705856323 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[2].display_name | Mean squared error |
| concepts[3].id | https://openalex.org/C39432304 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5674741268157959 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[3].display_name | Environmental science |
| concepts[4].id | https://openalex.org/C2983363897 |
| concepts[4].level | 2 |
| concepts[4].score | 0.519318699836731 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q845339 |
| concepts[4].display_name | Air temperature |
| concepts[5].id | https://openalex.org/C42090638 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4798133373260498 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q4048907 |
| concepts[5].display_name | STREAMS |
| concepts[6].id | https://openalex.org/C132651083 |
| concepts[6].level | 2 |
| concepts[6].score | 0.45384424924850464 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7942 |
| concepts[6].display_name | Climate change |
| concepts[7].id | https://openalex.org/C153294291 |
| concepts[7].level | 1 |
| concepts[7].score | 0.36600688099861145 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[7].display_name | Meteorology |
| concepts[8].id | https://openalex.org/C105795698 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3308540880680084 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[8].display_name | Statistics |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.29003483057022095 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.1971352994441986 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C205649164 |
| concepts[11].level | 0 |
| concepts[11].score | 0.15541225671768188 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[11].display_name | Geography |
| concepts[12].id | https://openalex.org/C18903297 |
| concepts[12].level | 1 |
| concepts[12].score | 0.10523936152458191 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[12].display_name | Ecology |
| concepts[13].id | https://openalex.org/C86803240 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[13].display_name | Biology |
| concepts[14].id | https://openalex.org/C31258907 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[14].display_name | Computer network |
| keywords[0].id | https://openalex.org/keywords/autocorrelation |
| keywords[0].score | 0.7113404273986816 |
| keywords[0].display_name | Autocorrelation |
| keywords[1].id | https://openalex.org/keywords/missing-data |
| keywords[1].score | 0.6171559691429138 |
| keywords[1].display_name | Missing data |
| keywords[2].id | https://openalex.org/keywords/mean-squared-error |
| keywords[2].score | 0.5735281705856323 |
| keywords[2].display_name | Mean squared error |
| keywords[3].id | https://openalex.org/keywords/environmental-science |
| keywords[3].score | 0.5674741268157959 |
| keywords[3].display_name | Environmental science |
| keywords[4].id | https://openalex.org/keywords/air-temperature |
| keywords[4].score | 0.519318699836731 |
| keywords[4].display_name | Air temperature |
| keywords[5].id | https://openalex.org/keywords/streams |
| keywords[5].score | 0.4798133373260498 |
| keywords[5].display_name | STREAMS |
| keywords[6].id | https://openalex.org/keywords/climate-change |
| keywords[6].score | 0.45384424924850464 |
| keywords[6].display_name | Climate change |
| keywords[7].id | https://openalex.org/keywords/meteorology |
| keywords[7].score | 0.36600688099861145 |
| keywords[7].display_name | Meteorology |
| keywords[8].id | https://openalex.org/keywords/statistics |
| keywords[8].score | 0.3308540880680084 |
| keywords[8].display_name | Statistics |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.29003483057022095 |
| keywords[9].display_name | Computer science |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.1971352994441986 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/geography |
| keywords[11].score | 0.15541225671768188 |
| keywords[11].display_name | Geography |
| keywords[12].id | https://openalex.org/keywords/ecology |
| keywords[12].score | 0.10523936152458191 |
| keywords[12].display_name | Ecology |
| language | en |
| locations[0].id | doi:10.7717/peerj.1727 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S1983995261 |
| locations[0].source.issn | 2167-8359 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2167-8359 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | PeerJ |
| locations[0].source.host_organization | https://openalex.org/P4310320104 |
| locations[0].source.host_organization_name | PeerJ, Inc. |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320104 |
| locations[0].source.host_organization_lineage_names | PeerJ, Inc. |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | PeerJ |
| locations[0].landing_page_url | https://doi.org/10.7717/peerj.1727 |
| locations[1].id | pmid:26966662 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | PeerJ |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/26966662 |
| locations[2].id | pmh:oai:doaj.org/article:233ee82ebeea4d91bece39f01ebc5d8f |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | PeerJ, Vol 4, p e1727 (2016) |
| locations[2].landing_page_url | https://doaj.org/article/233ee82ebeea4d91bece39f01ebc5d8f |
| locations[3].id | pmh:oai:europepmc.org:3758769 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | public-domain |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/public-domain |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/4782734 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5076551257 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0191-5678 |
| authorships[0].author.display_name | Benjamin H. Letcher |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1286329397 |
| authorships[0].affiliations[0].raw_affiliation_string | S.O. Conte Anadromous Fish Research Center, US Geological Survey/Leetown Science Center, Turners Falls, USA |
| authorships[0].institutions[0].id | https://openalex.org/I1286329397 |
| authorships[0].institutions[0].ror | https://ror.org/035a68863 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I1286329397, https://openalex.org/I1335927249 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | United States Geological Survey |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Benjamin H. Letcher |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | S.O. Conte Anadromous Fish Research Center, US Geological Survey/Leetown Science Center, Turners Falls, USA |
| authorships[1].author.id | https://openalex.org/A5008626690 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1889-9184 |
| authorships[1].author.display_name | Daniel J. Hocking |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1286329397 |
| authorships[1].affiliations[0].raw_affiliation_string | S.O. Conte Anadromous Fish Research Center, US Geological Survey/Leetown Science Center, Turners Falls, USA |
| authorships[1].institutions[0].id | https://openalex.org/I1286329397 |
| authorships[1].institutions[0].ror | https://ror.org/035a68863 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I1286329397, https://openalex.org/I1335927249 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | United States Geological Survey |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Daniel J. Hocking |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | S.O. Conte Anadromous Fish Research Center, US Geological Survey/Leetown Science Center, Turners Falls, USA |
| authorships[2].author.id | https://openalex.org/A5041893854 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Kyle O’Neil |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1286329397 |
| authorships[2].affiliations[0].raw_affiliation_string | S.O. Conte Anadromous Fish Research Center, US Geological Survey/Leetown Science Center, Turners Falls, USA |
| authorships[2].institutions[0].id | https://openalex.org/I1286329397 |
| authorships[2].institutions[0].ror | https://ror.org/035a68863 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I1286329397, https://openalex.org/I1335927249 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | United States Geological Survey |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kyle O’Neil |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | S.O. Conte Anadromous Fish Research Center, US Geological Survey/Leetown Science Center, Turners Falls, USA |
| authorships[3].author.id | https://openalex.org/A5046465487 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8159-6381 |
| authorships[3].author.display_name | Andrew R. Whiteley |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I24603500 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Environmental Conservation, University of Massachusetts, Amherst, USA |
| authorships[3].institutions[0].id | https://openalex.org/I24603500 |
| authorships[3].institutions[0].ror | https://ror.org/0072zz521 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I24603500 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Massachusetts Amherst |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Andrew R. Whiteley |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Environmental Conservation, University of Massachusetts, Amherst, USA |
| authorships[4].author.id | https://openalex.org/A5068671517 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8051-5765 |
| authorships[4].author.display_name | Keith H. Nislow |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I24603500, https://openalex.org/I4210107718 |
| authorships[4].affiliations[0].raw_affiliation_string | Northern Research Station, USDA Forest Service, University of Massachusetts, Amherst, MA, USA |
| authorships[4].institutions[0].id | https://openalex.org/I4210107718 |
| authorships[4].institutions[0].ror | https://ror.org/019jdc178 |
| authorships[4].institutions[0].type | government |
| authorships[4].institutions[0].lineage | https://openalex.org/I1313416372, https://openalex.org/I1336096307, https://openalex.org/I4210107718 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Northern Research Station |
| authorships[4].institutions[1].id | https://openalex.org/I24603500 |
| authorships[4].institutions[1].ror | https://ror.org/0072zz521 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I24603500 |
| authorships[4].institutions[1].country_code | US |
| authorships[4].institutions[1].display_name | University of Massachusetts Amherst |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Keith H. Nislow |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Northern Research Station, USDA Forest Service, University of Massachusetts, Amherst, MA, USA |
| authorships[5].author.id | https://openalex.org/A5041382454 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-9089-2377 |
| authorships[5].author.display_name | Matthew J. O’Donnell |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I1286329397 |
| authorships[5].affiliations[0].raw_affiliation_string | S.O. Conte Anadromous Fish Research Center, US Geological Survey/Leetown Science Center, Turners Falls, USA |
| authorships[5].institutions[0].id | https://openalex.org/I1286329397 |
| authorships[5].institutions[0].ror | https://ror.org/035a68863 |
| authorships[5].institutions[0].type | government |
| authorships[5].institutions[0].lineage | https://openalex.org/I1286329397, https://openalex.org/I1335927249 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | United States Geological Survey |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Matthew J. O’Donnell |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | S.O. Conte Anadromous Fish Research Center, US Geological Survey/Leetown Science Center, Turners Falls, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.7717/peerj.1727 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-25T14:43:58.451035 |
| primary_topic.id | https://openalex.org/T10302 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2309 |
| primary_topic.subfield.display_name | Nature and Landscape Conservation |
| primary_topic.display_name | Fish Ecology and Management Studies |
| related_works | https://openalex.org/W2010317732, https://openalex.org/W2483328176, https://openalex.org/W4380150146, https://openalex.org/W3024870410, https://openalex.org/W2410652950, https://openalex.org/W2061705145, https://openalex.org/W747394405, https://openalex.org/W4283773154, https://openalex.org/W3139174110, https://openalex.org/W4289597203 |
| cited_by_count | 101 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 10 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 12 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 13 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 10 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 13 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 9 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 8 |
| counts_by_year[7].year | 2018 |
| counts_by_year[7].cited_by_count | 7 |
| counts_by_year[8].year | 2017 |
| counts_by_year[8].cited_by_count | 15 |
| counts_by_year[9].year | 2016 |
| counts_by_year[9].cited_by_count | 4 |
| locations_count | 4 |
| best_oa_location.id | doi:10.7717/peerj.1727 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S1983995261 |
| best_oa_location.source.issn | 2167-8359 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2167-8359 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | PeerJ |
| best_oa_location.source.host_organization | https://openalex.org/P4310320104 |
| best_oa_location.source.host_organization_name | PeerJ, Inc. |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320104 |
| best_oa_location.source.host_organization_lineage_names | PeerJ, Inc. |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | PeerJ |
| best_oa_location.landing_page_url | https://doi.org/10.7717/peerj.1727 |
| primary_location.id | doi:10.7717/peerj.1727 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S1983995261 |
| primary_location.source.issn | 2167-8359 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2167-8359 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | PeerJ |
| primary_location.source.host_organization | https://openalex.org/P4310320104 |
| primary_location.source.host_organization_name | PeerJ, Inc. |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320104 |
| primary_location.source.host_organization_lineage_names | PeerJ, Inc. |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | PeerJ |
| primary_location.landing_page_url | https://doi.org/10.7717/peerj.1727 |
| publication_date | 2016-02-29 |
| publication_year | 2016 |
| referenced_works | https://openalex.org/W1988885151, https://openalex.org/W2046498361, https://openalex.org/W2088925649, https://openalex.org/W2155988679, https://openalex.org/W2093223772, https://openalex.org/W2141450658, https://openalex.org/W2168313526, https://openalex.org/W2067843160, https://openalex.org/W2166796724, https://openalex.org/W1995362251, https://openalex.org/W1976676731, https://openalex.org/W2073535431, https://openalex.org/W2148928811, https://openalex.org/W2045251542, https://openalex.org/W2035174903, https://openalex.org/W1673483003, https://openalex.org/W2322436506, https://openalex.org/W1999593688, https://openalex.org/W2093294976, https://openalex.org/W2013258474, https://openalex.org/W2156995740, https://openalex.org/W2132269757, https://openalex.org/W2145497169, https://openalex.org/W2100377232, https://openalex.org/W2133319490, https://openalex.org/W2153964357, https://openalex.org/W1910382331, https://openalex.org/W2095679033, https://openalex.org/W1971464362, https://openalex.org/W2018584279, https://openalex.org/W2114043462, https://openalex.org/W2101779404, https://openalex.org/W1506192482, https://openalex.org/W1950144341, https://openalex.org/W2021638339, https://openalex.org/W2135134353, https://openalex.org/W2109167110, https://openalex.org/W966676769, https://openalex.org/W6943967833, https://openalex.org/W2137991683, https://openalex.org/W2050022705, https://openalex.org/W6632854936, https://openalex.org/W2069529316, https://openalex.org/W2029323171, https://openalex.org/W1968317731, https://openalex.org/W1783268796, https://openalex.org/W2089826718, https://openalex.org/W2322534918, https://openalex.org/W2163157900, https://openalex.org/W2064424033, https://openalex.org/W1550472510, https://openalex.org/W2155347783, https://openalex.org/W1984278625, https://openalex.org/W2055462526, https://openalex.org/W2115677407, https://openalex.org/W6649217320, https://openalex.org/W2057705926, https://openalex.org/W2077623913, https://openalex.org/W6657815430, https://openalex.org/W2118048178, https://openalex.org/W2001456669, https://openalex.org/W2138025602, https://openalex.org/W2087195943, https://openalex.org/W1923142060, https://openalex.org/W1921505342, https://openalex.org/W2100517633, https://openalex.org/W1972677429, https://openalex.org/W1572523599, https://openalex.org/W1981457167, https://openalex.org/W1486034269, https://openalex.org/W1544274373, https://openalex.org/W2202665948, https://openalex.org/W2336296137, https://openalex.org/W1976823324, https://openalex.org/W2134447161, https://openalex.org/W1549853756, https://openalex.org/W2304307634, https://openalex.org/W2029591097, https://openalex.org/W1996062897, https://openalex.org/W2519589491 |
| referenced_works_count | 80 |
| abstract_inverted_index.) | 104 |
| abstract_inverted_index.= | 93 |
| abstract_inverted_index.a | 3, 39, 84, 96, 106, 129, 132, 152 |
| abstract_inverted_index.d | 113 |
| abstract_inverted_index.). | 116 |
| abstract_inverted_index.In | 83 |
| abstract_inverted_index.We | 37, 117 |
| abstract_inverted_index.as | 24 |
| abstract_inverted_index.in | 140, 159, 173 |
| abstract_inverted_index.is | 2 |
| abstract_inverted_index.of | 6, 14, 19, 108 |
| abstract_inverted_index.on | 135 |
| abstract_inverted_index.(29 | 112 |
| abstract_inverted_index.10% | 143 |
| abstract_inverted_index.Our | 54 |
| abstract_inverted_index.air | 61 |
| abstract_inverted_index.all | 149 |
| abstract_inverted_index.and | 9, 62, 76, 78, 105 |
| abstract_inverted_index.are | 22, 65 |
| abstract_inverted_index.but | 28, 161 |
| abstract_inverted_index.can | 48, 79 |
| abstract_inverted_index.for | 44, 151 |
| abstract_inverted_index.had | 131 |
| abstract_inverted_index.how | 121 |
| abstract_inverted_index.the | 12, 25, 57, 88, 109, 174 |
| abstract_inverted_index.was | 164 |
| abstract_inverted_index.°C | 101, 157 |
| abstract_inverted_index.RMSE | 141 |
| abstract_inverted_index.also | 118 |
| abstract_inverted_index.data | 75, 123, 127, 150, 167 |
| abstract_inverted_index.days | 145 |
| abstract_inverted_index.drop | 139 |
| abstract_inverted_index.from | 170 |
| abstract_inverted_index.jump | 158 |
| abstract_inverted_index.make | 49 |
| abstract_inverted_index.many | 45 |
| abstract_inverted_index.that | 42, 47 |
| abstract_inverted_index.this | 162 |
| abstract_inverted_index.time | 70 |
| abstract_inverted_index.well | 91 |
| abstract_inverted_index.were | 168 |
| abstract_inverted_index.when | 60, 166 |
| abstract_inverted_index.with | 73, 142, 146 |
| abstract_inverted_index.year | 130, 153 |
| abstract_inverted_index.−1 | 103, 115 |
| abstract_inverted_index.(0.63 | 100 |
| abstract_inverted_index.(RMSE | 92 |
| abstract_inverted_index.Water | 0 |
| abstract_inverted_index.basis | 13 |
| abstract_inverted_index.clear | 97 |
| abstract_inverted_index.daily | 30 |
| abstract_inverted_index.deals | 72 |
| abstract_inverted_index.fewer | 144 |
| abstract_inverted_index.forms | 11 |
| abstract_inverted_index.lags, | 71 |
| abstract_inverted_index.model | 41, 55, 89 |
| abstract_inverted_index.other | 171 |
| abstract_inverted_index.poses | 33 |
| abstract_inverted_index.small | 85, 133 |
| abstract_inverted_index.trend | 99 |
| abstract_inverted_index.water | 63 |
| abstract_inverted_index.RMSE), | 160 |
| abstract_inverted_index.Robust | 17 |
| abstract_inverted_index.data). | 147 |
| abstract_inverted_index.decade | 102, 114 |
| abstract_inverted_index.driver | 5 |
| abstract_inverted_index.effect | 134 |
| abstract_inverted_index.models | 18 |
| abstract_inverted_index.period | 59, 111 |
| abstract_inverted_index.stream | 7, 15, 20, 31, 50, 86 |
| abstract_inverted_index.within | 128 |
| abstract_inverted_index.yearly | 58 |
| abstract_inverted_index.(∼0.6 | 156 |
| abstract_inverted_index.Missing | 126, 148 |
| abstract_inverted_index.average | 138 |
| abstract_inverted_index.climate | 26 |
| abstract_inverted_index.include | 80 |
| abstract_inverted_index.missing | 74, 122 |
| abstract_inverted_index.primary | 4 |
| abstract_inverted_index.several | 34 |
| abstract_inverted_index.streams | 172 |
| abstract_inverted_index.warming | 98 |
| abstract_inverted_index.accounts | 43 |
| abstract_inverted_index.changes, | 27 |
| abstract_inverted_index.commonly | 10 |
| abstract_inverted_index.critical | 23 |
| abstract_inverted_index.decrease | 163 |
| abstract_inverted_index.drivers. | 82 |
| abstract_inverted_index.external | 81 |
| abstract_inverted_index.network, | 87 |
| abstract_inverted_index.network. | 175 |
| abstract_inverted_index.widening | 107 |
| abstract_inverted_index.(∼0.05% | 137 |
| abstract_inverted_index.0.59°C), | 94 |
| abstract_inverted_index.available | 169 |
| abstract_inverted_index.carefully | 119 |
| abstract_inverted_index.decreased | 154 |
| abstract_inverted_index.developed | 38 |
| abstract_inverted_index.evaluated | 120 |
| abstract_inverted_index.important | 35 |
| abstract_inverted_index.moderated | 165 |
| abstract_inverted_index.performed | 90 |
| abstract_inverted_index.challenges | 46 |
| abstract_inverted_index.difficult. | 53 |
| abstract_inverted_index.ecosystems | 8 |
| abstract_inverted_index.estimating | 29 |
| abstract_inverted_index.estimation | 52 |
| abstract_inverted_index.identified | 95 |
| abstract_inverted_index.identifies | 56 |
| abstract_inverted_index.influenced | 124 |
| abstract_inverted_index.challenges. | 36 |
| abstract_inverted_index.hysteresis, | 68 |
| abstract_inverted_index.performance | 136, 155 |
| abstract_inverted_index.statistical | 40 |
| abstract_inverted_index.temperature | 1, 21, 32, 51, 64 |
| abstract_inverted_index.accommodates | 67 |
| abstract_inverted_index.incorporates | 69 |
| abstract_inverted_index.predictions. | 125 |
| abstract_inverted_index.synchronized | 110 |
| abstract_inverted_index.synchronized, | 66 |
| abstract_inverted_index.autocorrelation | 77 |
| abstract_inverted_index.classifications. | 16 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/6 |
| sustainable_development_goals[0].score | 0.5400000214576721 |
| sustainable_development_goals[0].display_name | Clean water and sanitation |
| citation_normalized_percentile.value | 0.99046054 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |