A high-performance deep-learning-based pipeline for whole-brain vasculature segmentation at the capillary resolution Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1093/bioinformatics/btad145
Motivation Reconstructing and analyzing all blood vessels throughout the brain is significant for understanding brain function, revealing the mechanisms of brain disease, and mapping the whole-brain vascular atlas. Vessel segmentation is a fundamental step in reconstruction and analysis. The whole-brain optical microscopic imaging method enables the acquisition of whole-brain vessel images at the capillary resolution. Due to the massive amount of data and the complex vascular features generated by high-resolution whole-brain imaging, achieving rapid and accurate segmentation of whole-brain vasculature becomes a challenge. Results We introduce HP-VSP, a high-performance vessel segmentation pipeline based on deep learning. The pipeline consists of three processes: data blocking, block prediction, and block fusion. We used parallel computing to parallelize this pipeline to improve the efficiency of whole-brain vessel segmentation. We also designed a lightweight deep neural network based on multi-resolution vessel feature extraction to segment vessels at different scales throughout the brain accurately. We validated our approach on whole-brain vascular data from three transgenic mice collected by HD-fMOST. The results show that our proposed segmentation network achieves the state-of-the-art level under various evaluation metrics. In contrast, the parameters of the network are only 1% of those of similar networks. The established segmentation pipeline could be used on various computing platforms and complete the whole-brain vessel segmentation in 3 h. We also demonstrated that our pipeline could be applied to the vascular analysis. Availability and implementation The dataset is available at http://atlas.brainsmatics.org/a/li2301. The source code is freely available at https://github.com/visionlyx/HP-VSP.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/bioinformatics/btad145
- https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btad145/49590991/btad145.pdf
- OA Status
- gold
- Cited By
- 6
- References
- 22
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4328143759
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4328143759Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/bioinformatics/btad145Digital Object Identifier
- Title
-
A high-performance deep-learning-based pipeline for whole-brain vasculature segmentation at the capillary resolutionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-03-22Full publication date if available
- Authors
-
Yuxin Li, Xuhua Liu, Xueyan Jia, Tao Jiang, Jianghao Wu, Qianlong Zhang, Junhuai Li, Xiangning Li, Anan LiList of authors in order
- Landing page
-
https://doi.org/10.1093/bioinformatics/btad145Publisher landing page
- PDF URL
-
https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btad145/49590991/btad145.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btad145/49590991/btad145.pdfDirect OA link when available
- Concepts
-
Segmentation, Computer science, Pipeline (software), Artificial intelligence, Deep learning, Block (permutation group theory), Brain atlas, Computer vision, Pattern recognition (psychology), Programming language, Mathematics, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 1, 2023: 2Per-year citation counts (last 5 years)
- References (count)
-
22Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4328143759 |
|---|---|
| doi | https://doi.org/10.1093/bioinformatics/btad145 |
| ids.doi | https://doi.org/10.1093/bioinformatics/btad145 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36946294 |
| ids.openalex | https://openalex.org/W4328143759 |
| fwci | 1.33365227 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D051379 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Mice |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000818 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Animals |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D000077321 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Deep Learning |
| mesh[3].qualifier_ui | Q000000981 |
| mesh[3].descriptor_ui | D001921 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | diagnostic imaging |
| mesh[3].descriptor_name | Brain |
| mesh[4].qualifier_ui | Q000379 |
| mesh[4].descriptor_ui | D021621 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | methods |
| mesh[4].descriptor_name | Imaging, Three-Dimensional |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D016571 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Neural Networks, Computer |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D012984 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Software |
| mesh[7].qualifier_ui | Q000379 |
| mesh[7].descriptor_ui | D007091 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | methods |
| mesh[7].descriptor_name | Image Processing, Computer-Assisted |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D051379 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Mice |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000818 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Animals |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D000077321 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Deep Learning |
| mesh[11].qualifier_ui | Q000000981 |
| mesh[11].descriptor_ui | D001921 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | diagnostic imaging |
| mesh[11].descriptor_name | Brain |
| mesh[12].qualifier_ui | Q000379 |
| mesh[12].descriptor_ui | D021621 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | methods |
| mesh[12].descriptor_name | Imaging, Three-Dimensional |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D016571 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Neural Networks, Computer |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D012984 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Software |
| mesh[15].qualifier_ui | Q000379 |
| mesh[15].descriptor_ui | D007091 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | methods |
| mesh[15].descriptor_name | Image Processing, Computer-Assisted |
| type | article |
| title | A high-performance deep-learning-based pipeline for whole-brain vasculature segmentation at the capillary resolution |
| awards[0].id | https://openalex.org/G6032906993 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 82102137 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G7133812622 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | T2122015 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 4 |
| biblio.volume | 39 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11872 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9962000250816345 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2808 |
| topics[0].subfield.display_name | Neurology |
| topics[0].display_name | Barrier Structure and Function Studies |
| topics[1].id | https://openalex.org/T10052 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9954000115394592 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Medical Image Segmentation Techniques |
| topics[2].id | https://openalex.org/T11438 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.988099992275238 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Retinal Imaging and Analysis |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 3618 |
| apc_list.currency | USD |
| apc_list.value_usd | 3618 |
| apc_paid.value | 3618 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3618 |
| concepts[0].id | https://openalex.org/C89600930 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8217419981956482 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[0].display_name | Segmentation |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7854127287864685 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C43521106 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7830080986022949 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2165493 |
| concepts[2].display_name | Pipeline (software) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6730557084083557 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C108583219 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5630018711090088 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[4].display_name | Deep learning |
| concepts[5].id | https://openalex.org/C2777210771 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5185583233833313 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q4927124 |
| concepts[5].display_name | Block (permutation group theory) |
| concepts[6].id | https://openalex.org/C2780972224 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4840109050273895 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q17047956 |
| concepts[6].display_name | Brain atlas |
| concepts[7].id | https://openalex.org/C31972630 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4838344156742096 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[7].display_name | Computer vision |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4711885452270508 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C199360897 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[9].display_name | Programming language |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C2524010 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[11].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/segmentation |
| keywords[0].score | 0.8217419981956482 |
| keywords[0].display_name | Segmentation |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7854127287864685 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/pipeline |
| keywords[2].score | 0.7830080986022949 |
| keywords[2].display_name | Pipeline (software) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6730557084083557 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/deep-learning |
| keywords[4].score | 0.5630018711090088 |
| keywords[4].display_name | Deep learning |
| keywords[5].id | https://openalex.org/keywords/block |
| keywords[5].score | 0.5185583233833313 |
| keywords[5].display_name | Block (permutation group theory) |
| keywords[6].id | https://openalex.org/keywords/brain-atlas |
| keywords[6].score | 0.4840109050273895 |
| keywords[6].display_name | Brain atlas |
| keywords[7].id | https://openalex.org/keywords/computer-vision |
| keywords[7].score | 0.4838344156742096 |
| keywords[7].display_name | Computer vision |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.4711885452270508 |
| keywords[8].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | doi:10.1093/bioinformatics/btad145 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S52395412 |
| locations[0].source.issn | 1367-4803, 1367-4811 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1367-4803 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Bioinformatics |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btad145/49590991/btad145.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Bioinformatics |
| locations[0].landing_page_url | https://doi.org/10.1093/bioinformatics/btad145 |
| locations[1].id | pmid:36946294 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Bioinformatics (Oxford, England) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36946294 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10068744 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10068744/pdf/btad145.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Bioinformatics |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10068744 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5100321610 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7404-6595 |
| authorships[0].author.display_name | Yuxin Li |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210131919 |
| authorships[0].affiliations[0].raw_affiliation_string | Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi’an University of Technology , Xi’an 710048, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210131919 |
| authorships[0].institutions[0].ror | https://ror.org/038avdt50 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210131919 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Xi'an University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yuxin Li |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi’an University of Technology , Xi’an 710048, China |
| authorships[1].author.id | https://openalex.org/A5029324710 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6919-8292 |
| authorships[1].author.display_name | Xuhua Liu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210131919 |
| authorships[1].affiliations[0].raw_affiliation_string | Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi’an University of Technology , Xi’an 710048, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210131919 |
| authorships[1].institutions[0].ror | https://ror.org/038avdt50 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210131919 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Xi'an University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xuhua Liu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi’an University of Technology , Xi’an 710048, China |
| authorships[2].author.id | https://openalex.org/A5028674594 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1221-6357 |
| authorships[2].author.display_name | Xueyan Jia |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210125878 |
| authorships[2].affiliations[0].raw_affiliation_string | HUST-Suzhou Institute for Brainsmatics, Suzhou, 215123, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210125878 |
| authorships[2].institutions[0].ror | https://ror.org/03ebk0c60 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210125878 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Suzhou Research Institute |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xueyan Jia |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | HUST-Suzhou Institute for Brainsmatics, Suzhou, 215123, China |
| authorships[3].author.id | https://openalex.org/A5013422241 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4487-299X |
| authorships[3].author.display_name | Tao Jiang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210125878 |
| authorships[3].affiliations[0].raw_affiliation_string | HUST-Suzhou Institute for Brainsmatics, Suzhou, 215123, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210125878 |
| authorships[3].institutions[0].ror | https://ror.org/03ebk0c60 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210125878 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Suzhou Research Institute |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tao Jiang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | HUST-Suzhou Institute for Brainsmatics, Suzhou, 215123, China |
| authorships[4].author.id | https://openalex.org/A5102761515 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6756-5207 |
| authorships[4].author.display_name | Jianghao Wu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210131919 |
| authorships[4].affiliations[0].raw_affiliation_string | Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi’an University of Technology , Xi’an 710048, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210131919 |
| authorships[4].institutions[0].ror | https://ror.org/038avdt50 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210131919 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Xi'an University of Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jianghao Wu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi’an University of Technology , Xi’an 710048, China |
| authorships[5].author.id | https://openalex.org/A5101963610 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8186-5043 |
| authorships[5].author.display_name | Qianlong Zhang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210131919 |
| authorships[5].affiliations[0].raw_affiliation_string | Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi’an University of Technology , Xi’an 710048, China |
| authorships[5].institutions[0].id | https://openalex.org/I4210131919 |
| authorships[5].institutions[0].ror | https://ror.org/038avdt50 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210131919 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Xi'an University of Technology |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Qianlong Zhang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi’an University of Technology , Xi’an 710048, China |
| authorships[6].author.id | https://openalex.org/A5046113804 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-5483-5175 |
| authorships[6].author.display_name | Junhuai Li |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210131919 |
| authorships[6].affiliations[0].raw_affiliation_string | Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi’an University of Technology , Xi’an 710048, China |
| authorships[6].institutions[0].id | https://openalex.org/I4210131919 |
| authorships[6].institutions[0].ror | https://ror.org/038avdt50 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210131919 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Xi'an University of Technology |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Junhuai Li |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi’an University of Technology , Xi’an 710048, China |
| authorships[7].author.id | https://openalex.org/A5073996645 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-3747-2824 |
| authorships[7].author.display_name | Xiangning Li |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210138186, https://openalex.org/I47720641 |
| authorships[7].affiliations[0].raw_affiliation_string | Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I4210125878 |
| authorships[7].affiliations[1].raw_affiliation_string | HUST-Suzhou Institute for Brainsmatics, Suzhou, 215123, China |
| authorships[7].institutions[0].id | https://openalex.org/I47720641 |
| authorships[7].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[7].institutions[1].id | https://openalex.org/I4210125878 |
| authorships[7].institutions[1].ror | https://ror.org/03ebk0c60 |
| authorships[7].institutions[1].type | facility |
| authorships[7].institutions[1].lineage | https://openalex.org/I4210125878 |
| authorships[7].institutions[1].country_code | CN |
| authorships[7].institutions[1].display_name | Suzhou Research Institute |
| authorships[7].institutions[2].id | https://openalex.org/I4210138186 |
| authorships[7].institutions[2].ror | https://ror.org/03c9ncn37 |
| authorships[7].institutions[2].type | facility |
| authorships[7].institutions[2].lineage | https://openalex.org/I4210138186 |
| authorships[7].institutions[2].country_code | CN |
| authorships[7].institutions[2].display_name | Wuhan National Laboratory for Optoelectronics |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Xiangning Li |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China, HUST-Suzhou Institute for Brainsmatics, Suzhou, 215123, China |
| authorships[8].author.id | https://openalex.org/A5017229676 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-5877-4813 |
| authorships[8].author.display_name | Anan Li |
| authorships[8].countries | CN |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I4210138186, https://openalex.org/I47720641 |
| authorships[8].affiliations[0].raw_affiliation_string | Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China |
| authorships[8].affiliations[1].institution_ids | https://openalex.org/I4210125878 |
| authorships[8].affiliations[1].raw_affiliation_string | HUST-Suzhou Institute for Brainsmatics, Suzhou, 215123, China |
| authorships[8].institutions[0].id | https://openalex.org/I47720641 |
| authorships[8].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[8].institutions[0].country_code | CN |
| authorships[8].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[8].institutions[1].id | https://openalex.org/I4210125878 |
| authorships[8].institutions[1].ror | https://ror.org/03ebk0c60 |
| authorships[8].institutions[1].type | facility |
| authorships[8].institutions[1].lineage | https://openalex.org/I4210125878 |
| authorships[8].institutions[1].country_code | CN |
| authorships[8].institutions[1].display_name | Suzhou Research Institute |
| authorships[8].institutions[2].id | https://openalex.org/I4210138186 |
| authorships[8].institutions[2].ror | https://ror.org/03c9ncn37 |
| authorships[8].institutions[2].type | facility |
| authorships[8].institutions[2].lineage | https://openalex.org/I4210138186 |
| authorships[8].institutions[2].country_code | CN |
| authorships[8].institutions[2].display_name | Wuhan National Laboratory for Optoelectronics |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Anan Li |
| authorships[8].is_corresponding | True |
| authorships[8].raw_affiliation_strings | Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China, HUST-Suzhou Institute for Brainsmatics, Suzhou, 215123, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btad145/49590991/btad145.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A high-performance deep-learning-based pipeline for whole-brain vasculature segmentation at the capillary resolution |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11872 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9962000250816345 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2808 |
| primary_topic.subfield.display_name | Neurology |
| primary_topic.display_name | Barrier Structure and Function Studies |
| related_works | https://openalex.org/W4375867731, https://openalex.org/W3037187668, https://openalex.org/W2611989081, https://openalex.org/W4230611425, https://openalex.org/W2731899572, https://openalex.org/W2380685755, https://openalex.org/W4304166257, https://openalex.org/W4294635752, https://openalex.org/W2252100032, https://openalex.org/W4388446985 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1093/bioinformatics/btad145 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S52395412 |
| best_oa_location.source.issn | 1367-4803, 1367-4811 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1367-4803 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Bioinformatics |
| best_oa_location.source.host_organization | https://openalex.org/P4310311648 |
| best_oa_location.source.host_organization_name | Oxford University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btad145/49590991/btad145.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Bioinformatics |
| best_oa_location.landing_page_url | https://doi.org/10.1093/bioinformatics/btad145 |
| primary_location.id | doi:10.1093/bioinformatics/btad145 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S52395412 |
| primary_location.source.issn | 1367-4803, 1367-4811 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1367-4803 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Bioinformatics |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btad145/49590991/btad145.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Bioinformatics |
| primary_location.landing_page_url | https://doi.org/10.1093/bioinformatics/btad145 |
| publication_date | 2023-03-22 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2122372853, https://openalex.org/W4223544586, https://openalex.org/W4298315202, https://openalex.org/W2756343653, https://openalex.org/W3134409008, https://openalex.org/W3127634507, https://openalex.org/W3006529112, https://openalex.org/W2616216465, https://openalex.org/W2993349546, https://openalex.org/W4281386494, https://openalex.org/W2791117644, https://openalex.org/W2087356761, https://openalex.org/W2890224686, https://openalex.org/W3012387312, https://openalex.org/W3197511916, https://openalex.org/W2011650974, https://openalex.org/W4283262458, https://openalex.org/W2780318688, https://openalex.org/W4220805800, https://openalex.org/W2970108735, https://openalex.org/W3134405878, https://openalex.org/W4225538532 |
| referenced_works_count | 22 |
| abstract_inverted_index.3 | 214 |
| abstract_inverted_index.a | 32, 82, 88, 129 |
| abstract_inverted_index.1% | 190 |
| abstract_inverted_index.In | 181 |
| abstract_inverted_index.We | 85, 110, 126, 150, 216 |
| abstract_inverted_index.at | 52, 143, 236, 244 |
| abstract_inverted_index.be | 201, 223 |
| abstract_inverted_index.by | 69, 163 |
| abstract_inverted_index.h. | 215 |
| abstract_inverted_index.in | 35, 213 |
| abstract_inverted_index.is | 11, 31, 234, 241 |
| abstract_inverted_index.of | 20, 48, 61, 78, 100, 122, 185, 191, 193 |
| abstract_inverted_index.on | 94, 135, 154, 203 |
| abstract_inverted_index.to | 57, 114, 118, 140, 225 |
| abstract_inverted_index.Due | 56 |
| abstract_inverted_index.The | 39, 97, 165, 196, 232, 238 |
| abstract_inverted_index.all | 5 |
| abstract_inverted_index.and | 3, 23, 37, 63, 75, 107, 207, 230 |
| abstract_inverted_index.are | 188 |
| abstract_inverted_index.for | 13 |
| abstract_inverted_index.our | 152, 169, 220 |
| abstract_inverted_index.the | 9, 18, 25, 46, 53, 58, 64, 120, 147, 174, 183, 186, 209, 226 |
| abstract_inverted_index.also | 127, 217 |
| abstract_inverted_index.code | 240 |
| abstract_inverted_index.data | 62, 103, 157 |
| abstract_inverted_index.deep | 95, 131 |
| abstract_inverted_index.from | 158 |
| abstract_inverted_index.mice | 161 |
| abstract_inverted_index.only | 189 |
| abstract_inverted_index.show | 167 |
| abstract_inverted_index.step | 34 |
| abstract_inverted_index.that | 168, 219 |
| abstract_inverted_index.this | 116 |
| abstract_inverted_index.used | 111, 202 |
| abstract_inverted_index.based | 93, 134 |
| abstract_inverted_index.block | 105, 108 |
| abstract_inverted_index.blood | 6 |
| abstract_inverted_index.brain | 10, 15, 21, 148 |
| abstract_inverted_index.could | 200, 222 |
| abstract_inverted_index.level | 176 |
| abstract_inverted_index.rapid | 74 |
| abstract_inverted_index.those | 192 |
| abstract_inverted_index.three | 101, 159 |
| abstract_inverted_index.under | 177 |
| abstract_inverted_index.Vessel | 29 |
| abstract_inverted_index.amount | 60 |
| abstract_inverted_index.atlas. | 28 |
| abstract_inverted_index.freely | 242 |
| abstract_inverted_index.images | 51 |
| abstract_inverted_index.method | 44 |
| abstract_inverted_index.neural | 132 |
| abstract_inverted_index.scales | 145 |
| abstract_inverted_index.source | 239 |
| abstract_inverted_index.vessel | 50, 90, 124, 137, 211 |
| abstract_inverted_index.HP-VSP, | 87 |
| abstract_inverted_index.Results | 84 |
| abstract_inverted_index.applied | 224 |
| abstract_inverted_index.becomes | 81 |
| abstract_inverted_index.complex | 65 |
| abstract_inverted_index.dataset | 233 |
| abstract_inverted_index.enables | 45 |
| abstract_inverted_index.feature | 138 |
| abstract_inverted_index.fusion. | 109 |
| abstract_inverted_index.imaging | 43 |
| abstract_inverted_index.improve | 119 |
| abstract_inverted_index.mapping | 24 |
| abstract_inverted_index.massive | 59 |
| abstract_inverted_index.network | 133, 172, 187 |
| abstract_inverted_index.optical | 41 |
| abstract_inverted_index.results | 166 |
| abstract_inverted_index.segment | 141 |
| abstract_inverted_index.similar | 194 |
| abstract_inverted_index.various | 178, 204 |
| abstract_inverted_index.vessels | 7, 142 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.accurate | 76 |
| abstract_inverted_index.achieves | 173 |
| abstract_inverted_index.approach | 153 |
| abstract_inverted_index.complete | 208 |
| abstract_inverted_index.consists | 99 |
| abstract_inverted_index.designed | 128 |
| abstract_inverted_index.disease, | 22 |
| abstract_inverted_index.features | 67 |
| abstract_inverted_index.imaging, | 72 |
| abstract_inverted_index.metrics. | 180 |
| abstract_inverted_index.parallel | 112 |
| abstract_inverted_index.pipeline | 92, 98, 117, 199, 221 |
| abstract_inverted_index.proposed | 170 |
| abstract_inverted_index.vascular | 27, 66, 156, 227 |
| abstract_inverted_index.HD-fMOST. | 164 |
| abstract_inverted_index.achieving | 73 |
| abstract_inverted_index.analysis. | 38, 228 |
| abstract_inverted_index.analyzing | 4 |
| abstract_inverted_index.available | 235, 243 |
| abstract_inverted_index.blocking, | 104 |
| abstract_inverted_index.capillary | 54 |
| abstract_inverted_index.collected | 162 |
| abstract_inverted_index.computing | 113, 205 |
| abstract_inverted_index.contrast, | 182 |
| abstract_inverted_index.different | 144 |
| abstract_inverted_index.function, | 16 |
| abstract_inverted_index.generated | 68 |
| abstract_inverted_index.introduce | 86 |
| abstract_inverted_index.learning. | 96 |
| abstract_inverted_index.networks. | 195 |
| abstract_inverted_index.platforms | 206 |
| abstract_inverted_index.revealing | 17 |
| abstract_inverted_index.validated | 151 |
| abstract_inverted_index.Motivation | 1 |
| abstract_inverted_index.challenge. | 83 |
| abstract_inverted_index.efficiency | 121 |
| abstract_inverted_index.evaluation | 179 |
| abstract_inverted_index.extraction | 139 |
| abstract_inverted_index.mechanisms | 19 |
| abstract_inverted_index.parameters | 184 |
| abstract_inverted_index.processes: | 102 |
| abstract_inverted_index.throughout | 8, 146 |
| abstract_inverted_index.transgenic | 160 |
| abstract_inverted_index.accurately. | 149 |
| abstract_inverted_index.acquisition | 47 |
| abstract_inverted_index.established | 197 |
| abstract_inverted_index.fundamental | 33 |
| abstract_inverted_index.lightweight | 130 |
| abstract_inverted_index.microscopic | 42 |
| abstract_inverted_index.parallelize | 115 |
| abstract_inverted_index.prediction, | 106 |
| abstract_inverted_index.resolution. | 55 |
| abstract_inverted_index.significant | 12 |
| abstract_inverted_index.vasculature | 80 |
| abstract_inverted_index.whole-brain | 26, 40, 49, 71, 79, 123, 155, 210 |
| abstract_inverted_index.Availability | 229 |
| abstract_inverted_index.demonstrated | 218 |
| abstract_inverted_index.segmentation | 30, 77, 91, 171, 198, 212 |
| abstract_inverted_index.segmentation. | 125 |
| abstract_inverted_index.understanding | 14 |
| abstract_inverted_index.Reconstructing | 2 |
| abstract_inverted_index.implementation | 231 |
| abstract_inverted_index.reconstruction | 36 |
| abstract_inverted_index.high-resolution | 70 |
| abstract_inverted_index.high-performance | 89 |
| abstract_inverted_index.multi-resolution | 136 |
| abstract_inverted_index.state-of-the-art | 175 |
| abstract_inverted_index.https://github.com/visionlyx/HP-VSP. | 245 |
| abstract_inverted_index.http://atlas.brainsmatics.org/a/li2301. | 237 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5017229676, https://openalex.org/A5100321610 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 9 |
| corresponding_institution_ids | https://openalex.org/I4210125878, https://openalex.org/I4210131919, https://openalex.org/I4210138186, https://openalex.org/I47720641 |
| citation_normalized_percentile.value | 0.73135556 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |