A high-precision edge detection technique for magnetic anomaly signals based on a self-attention mechanism Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3389/feart.2025.1600631
Magnetic data boundary detection is a key technology in potential field data processing, providing an effective basis for the division of geological units and fault structures. It holds significant importance in geological structure analysis and mineral exploration. Deep learning methods, which can automatically capture complex magnetic anomaly features, have been widely applied in boundary detection. However, convolution-based neural networks are limited by the local receptive field of the convolution paradigm, making it difficult to effectively establish long-range dependencies. This poses a challenge for high-precision magnetic data boundary detection. Additionally, traditional loss functions fail to guide the network in effectively extracting boundary information, limiting the accuracy of boundary detection. To address these issues, this paper proposes a magnetic data boundary detection method based on a self-attention mechanism. This method fully leverages the self-attention mechanism in Transformers to effectively extract global features, allowing the model to focus on key regions within the input data, thereby enhancing its ability to recognize complex boundaries. Meanwhile, an edge-enhanced loss function is introduced to further strengthen the model’s ability to extract boundary information. Synthetic experiments demonstrate that the proposed method achieves higher prediction accuracy and more precise boundary localization. Furthermore, validation using magnetic anomaly observation data from the Yushishan area in Gansu, China, confirms the reliability of the boundary detection results.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3389/feart.2025.1600631
- OA Status
- gold
- Cited By
- 1
- References
- 31
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413081749
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413081749Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/feart.2025.1600631Digital Object Identifier
- Title
-
A high-precision edge detection technique for magnetic anomaly signals based on a self-attention mechanismWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-17Full publication date if available
- Authors
-
Ju Haihua, Li Wang, Jie Yang, Gaochuan Liu, Xia Zhong, Jian Jiao, Le Zhang, Bo DaiList of authors in order
- Landing page
-
https://doi.org/10.3389/feart.2025.1600631Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3389/feart.2025.1600631Direct OA link when available
- Concepts
-
Computer science, Anomaly detection, Boundary (topology), Artificial intelligence, Convolution (computer science), Deep learning, Data mining, Artificial neural network, Pattern recognition (psychology), Mathematics, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
31Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413081749 |
|---|---|
| doi | https://doi.org/10.3389/feart.2025.1600631 |
| ids.doi | https://doi.org/10.3389/feart.2025.1600631 |
| ids.openalex | https://openalex.org/W4413081749 |
| fwci | 4.92056898 |
| type | article |
| title | A high-precision edge detection technique for magnetic anomaly signals based on a self-attention mechanism |
| biblio.issue | |
| biblio.volume | 13 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10572 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1908 |
| topics[0].subfield.display_name | Geophysics |
| topics[0].display_name | Geophysical and Geoelectrical Methods |
| topics[1].id | https://openalex.org/T11609 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.998199999332428 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2212 |
| topics[1].subfield.display_name | Ocean Engineering |
| topics[1].display_name | Geophysical Methods and Applications |
| topics[2].id | https://openalex.org/T11786 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9976999759674072 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Geomagnetism and Paleomagnetism Studies |
| is_xpac | False |
| apc_list.value | 2950 |
| apc_list.currency | USD |
| apc_list.value_usd | 2950 |
| apc_paid.value | 2950 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2950 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7099006175994873 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C739882 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6718461513519287 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3560506 |
| concepts[1].display_name | Anomaly detection |
| concepts[2].id | https://openalex.org/C62354387 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5709958672523499 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q875399 |
| concepts[2].display_name | Boundary (topology) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4965062737464905 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C45347329 |
| concepts[4].level | 3 |
| concepts[4].score | 0.46689164638519287 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5166604 |
| concepts[4].display_name | Convolution (computer science) |
| concepts[5].id | https://openalex.org/C108583219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.44252899289131165 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep learning |
| concepts[6].id | https://openalex.org/C124101348 |
| concepts[6].level | 1 |
| concepts[6].score | 0.41830840706825256 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[6].display_name | Data mining |
| concepts[7].id | https://openalex.org/C50644808 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4132792055606842 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[7].display_name | Artificial neural network |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.3978020250797272 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.1172117292881012 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C134306372 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[10].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7099006175994873 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/anomaly-detection |
| keywords[1].score | 0.6718461513519287 |
| keywords[1].display_name | Anomaly detection |
| keywords[2].id | https://openalex.org/keywords/boundary |
| keywords[2].score | 0.5709958672523499 |
| keywords[2].display_name | Boundary (topology) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.4965062737464905 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/convolution |
| keywords[4].score | 0.46689164638519287 |
| keywords[4].display_name | Convolution (computer science) |
| keywords[5].id | https://openalex.org/keywords/deep-learning |
| keywords[5].score | 0.44252899289131165 |
| keywords[5].display_name | Deep learning |
| keywords[6].id | https://openalex.org/keywords/data-mining |
| keywords[6].score | 0.41830840706825256 |
| keywords[6].display_name | Data mining |
| keywords[7].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[7].score | 0.4132792055606842 |
| keywords[7].display_name | Artificial neural network |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.3978020250797272 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.1172117292881012 |
| keywords[9].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.3389/feart.2025.1600631 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2595152256 |
| locations[0].source.issn | 2296-6463 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2296-6463 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Earth Science |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_lineage_names | Frontiers Media |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Earth Science |
| locations[0].landing_page_url | https://doi.org/10.3389/feart.2025.1600631 |
| locations[1].id | pmh:oai:doaj.org/article:5cc1b74ca9a14d1dae34a5e6b436e4f7 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Frontiers in Earth Science, Vol 13 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/5cc1b74ca9a14d1dae34a5e6b436e4f7 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5034101756 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Ju Haihua |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ju Haihua |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100382402 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2929-4255 |
| authorships[1].author.display_name | Li Wang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wang Li |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100681896 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3706-2462 |
| authorships[2].author.display_name | Jie Yang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yang Jie |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5076242640 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Gaochuan Liu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Liu Gaochuan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5101577181 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7110-7097 |
| authorships[4].author.display_name | Xia Zhong |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Xia Zhong |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5044907307 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6593-0407 |
| authorships[5].author.display_name | Jian Jiao |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jiao Jian |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5100350631 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-6930-8674 |
| authorships[6].author.display_name | Le Zhang |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Zhang Le |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5101990493 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-0777-9232 |
| authorships[7].author.display_name | Bo Dai |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Dai Bo |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3389/feart.2025.1600631 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A high-precision edge detection technique for magnetic anomaly signals based on a self-attention mechanism |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10572 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1908 |
| primary_topic.subfield.display_name | Geophysics |
| primary_topic.display_name | Geophysical and Geoelectrical Methods |
| related_works | https://openalex.org/W4375867731, https://openalex.org/W2611989081, https://openalex.org/W2105642232, https://openalex.org/W3207332793, https://openalex.org/W3197833032, https://openalex.org/W2731899572, https://openalex.org/W4386081464, https://openalex.org/W4230611425, https://openalex.org/W4294635752, https://openalex.org/W4304166257 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3389/feart.2025.1600631 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2595152256 |
| best_oa_location.source.issn | 2296-6463 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2296-6463 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Earth Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_lineage_names | Frontiers Media |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Earth Science |
| best_oa_location.landing_page_url | https://doi.org/10.3389/feart.2025.1600631 |
| primary_location.id | doi:10.3389/feart.2025.1600631 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2595152256 |
| primary_location.source.issn | 2296-6463 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2296-6463 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Earth Science |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_lineage_names | Frontiers Media |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Earth Science |
| primary_location.landing_page_url | https://doi.org/10.3389/feart.2025.1600631 |
| publication_date | 2025-07-17 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2155846016, https://openalex.org/W4403751790, https://openalex.org/W4296685819, https://openalex.org/W1981295208, https://openalex.org/W4389670631, https://openalex.org/W2097493223, https://openalex.org/W4402822794, https://openalex.org/W3208513980, https://openalex.org/W4307480063, https://openalex.org/W3112822584, https://openalex.org/W4313044059, https://openalex.org/W4210792151, https://openalex.org/W4404953220, https://openalex.org/W2027447908, https://openalex.org/W2124418074, https://openalex.org/W2091682094, https://openalex.org/W2070575958, https://openalex.org/W3201608086, https://openalex.org/W1498436455, https://openalex.org/W2115314373, https://openalex.org/W4212854372, https://openalex.org/W4411688196, https://openalex.org/W4409783530, https://openalex.org/W4308303479, https://openalex.org/W2348353585, https://openalex.org/W2369209241, https://openalex.org/W3147262955, https://openalex.org/W4205431410, https://openalex.org/W4404035614, https://openalex.org/W4311288330, https://openalex.org/W4403936230 |
| referenced_works_count | 31 |
| abstract_inverted_index.a | 5, 80, 115, 123 |
| abstract_inverted_index.It | 26 |
| abstract_inverted_index.To | 108 |
| abstract_inverted_index.an | 14, 161 |
| abstract_inverted_index.by | 61 |
| abstract_inverted_index.in | 8, 30, 52, 97, 133, 204 |
| abstract_inverted_index.is | 4, 165 |
| abstract_inverted_index.it | 71 |
| abstract_inverted_index.of | 20, 66, 105, 210 |
| abstract_inverted_index.on | 122, 145 |
| abstract_inverted_index.to | 73, 93, 135, 143, 156, 167, 173 |
| abstract_inverted_index.and | 23, 34, 188 |
| abstract_inverted_index.are | 59 |
| abstract_inverted_index.can | 41 |
| abstract_inverted_index.for | 17, 82 |
| abstract_inverted_index.its | 154 |
| abstract_inverted_index.key | 6, 146 |
| abstract_inverted_index.the | 18, 62, 67, 95, 103, 130, 141, 149, 170, 181, 201, 208, 211 |
| abstract_inverted_index.Deep | 37 |
| abstract_inverted_index.This | 78, 126 |
| abstract_inverted_index.area | 203 |
| abstract_inverted_index.been | 49 |
| abstract_inverted_index.data | 1, 11, 85, 117, 199 |
| abstract_inverted_index.fail | 92 |
| abstract_inverted_index.from | 200 |
| abstract_inverted_index.have | 48 |
| abstract_inverted_index.loss | 90, 163 |
| abstract_inverted_index.more | 189 |
| abstract_inverted_index.that | 180 |
| abstract_inverted_index.this | 112 |
| abstract_inverted_index.based | 121 |
| abstract_inverted_index.basis | 16 |
| abstract_inverted_index.data, | 151 |
| abstract_inverted_index.fault | 24 |
| abstract_inverted_index.field | 10, 65 |
| abstract_inverted_index.focus | 144 |
| abstract_inverted_index.fully | 128 |
| abstract_inverted_index.guide | 94 |
| abstract_inverted_index.holds | 27 |
| abstract_inverted_index.input | 150 |
| abstract_inverted_index.local | 63 |
| abstract_inverted_index.model | 142 |
| abstract_inverted_index.paper | 113 |
| abstract_inverted_index.poses | 79 |
| abstract_inverted_index.these | 110 |
| abstract_inverted_index.units | 22 |
| abstract_inverted_index.using | 195 |
| abstract_inverted_index.which | 40 |
| abstract_inverted_index.China, | 206 |
| abstract_inverted_index.Gansu, | 205 |
| abstract_inverted_index.global | 138 |
| abstract_inverted_index.higher | 185 |
| abstract_inverted_index.making | 70 |
| abstract_inverted_index.method | 120, 127, 183 |
| abstract_inverted_index.neural | 57 |
| abstract_inverted_index.widely | 50 |
| abstract_inverted_index.within | 148 |
| abstract_inverted_index.ability | 155, 172 |
| abstract_inverted_index.address | 109 |
| abstract_inverted_index.anomaly | 46, 197 |
| abstract_inverted_index.applied | 51 |
| abstract_inverted_index.capture | 43 |
| abstract_inverted_index.complex | 44, 158 |
| abstract_inverted_index.extract | 137, 174 |
| abstract_inverted_index.further | 168 |
| abstract_inverted_index.issues, | 111 |
| abstract_inverted_index.limited | 60 |
| abstract_inverted_index.mineral | 35 |
| abstract_inverted_index.network | 96 |
| abstract_inverted_index.precise | 190 |
| abstract_inverted_index.regions | 147 |
| abstract_inverted_index.thereby | 152 |
| abstract_inverted_index.However, | 55 |
| abstract_inverted_index.Magnetic | 0 |
| abstract_inverted_index.accuracy | 104, 187 |
| abstract_inverted_index.achieves | 184 |
| abstract_inverted_index.allowing | 140 |
| abstract_inverted_index.analysis | 33 |
| abstract_inverted_index.boundary | 2, 53, 86, 100, 106, 118, 175, 191, 212 |
| abstract_inverted_index.confirms | 207 |
| abstract_inverted_index.division | 19 |
| abstract_inverted_index.function | 164 |
| abstract_inverted_index.learning | 38 |
| abstract_inverted_index.limiting | 102 |
| abstract_inverted_index.magnetic | 45, 84, 116, 196 |
| abstract_inverted_index.methods, | 39 |
| abstract_inverted_index.networks | 58 |
| abstract_inverted_index.proposed | 182 |
| abstract_inverted_index.proposes | 114 |
| abstract_inverted_index.results. | 214 |
| abstract_inverted_index.Synthetic | 177 |
| abstract_inverted_index.Yushishan | 202 |
| abstract_inverted_index.challenge | 81 |
| abstract_inverted_index.detection | 3, 119, 213 |
| abstract_inverted_index.difficult | 72 |
| abstract_inverted_index.effective | 15 |
| abstract_inverted_index.enhancing | 153 |
| abstract_inverted_index.establish | 75 |
| abstract_inverted_index.features, | 47, 139 |
| abstract_inverted_index.functions | 91 |
| abstract_inverted_index.leverages | 129 |
| abstract_inverted_index.mechanism | 132 |
| abstract_inverted_index.model’s | 171 |
| abstract_inverted_index.paradigm, | 69 |
| abstract_inverted_index.potential | 9 |
| abstract_inverted_index.providing | 13 |
| abstract_inverted_index.receptive | 64 |
| abstract_inverted_index.recognize | 157 |
| abstract_inverted_index.structure | 32 |
| abstract_inverted_index.Meanwhile, | 160 |
| abstract_inverted_index.detection. | 54, 87, 107 |
| abstract_inverted_index.extracting | 99 |
| abstract_inverted_index.geological | 21, 31 |
| abstract_inverted_index.importance | 29 |
| abstract_inverted_index.introduced | 166 |
| abstract_inverted_index.long-range | 76 |
| abstract_inverted_index.mechanism. | 125 |
| abstract_inverted_index.prediction | 186 |
| abstract_inverted_index.strengthen | 169 |
| abstract_inverted_index.technology | 7 |
| abstract_inverted_index.validation | 194 |
| abstract_inverted_index.boundaries. | 159 |
| abstract_inverted_index.convolution | 68 |
| abstract_inverted_index.demonstrate | 179 |
| abstract_inverted_index.effectively | 74, 98, 136 |
| abstract_inverted_index.experiments | 178 |
| abstract_inverted_index.observation | 198 |
| abstract_inverted_index.processing, | 12 |
| abstract_inverted_index.reliability | 209 |
| abstract_inverted_index.significant | 28 |
| abstract_inverted_index.structures. | 25 |
| abstract_inverted_index.traditional | 89 |
| abstract_inverted_index.Furthermore, | 193 |
| abstract_inverted_index.Transformers | 134 |
| abstract_inverted_index.exploration. | 36 |
| abstract_inverted_index.information, | 101 |
| abstract_inverted_index.information. | 176 |
| abstract_inverted_index.Additionally, | 88 |
| abstract_inverted_index.automatically | 42 |
| abstract_inverted_index.dependencies. | 77 |
| abstract_inverted_index.edge-enhanced | 162 |
| abstract_inverted_index.localization. | 192 |
| abstract_inverted_index.high-precision | 83 |
| abstract_inverted_index.self-attention | 124, 131 |
| abstract_inverted_index.convolution-based | 56 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.91649891 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |