A Holistic Power Optimization Approach for Microgrid Control Based on Deep Reinforcement Learning Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2403.01013
The global energy landscape is undergoing a transformation towards decarbonization, sustainability, and cost-efficiency. In this transition, microgrid systems integrated with renewable energy sources (RES) and energy storage systems (ESS) have emerged as a crucial component. However, optimizing the operational control of such an integrated energy system lacks a holistic view of multiple environmental, infrastructural and economic considerations, not to mention the need to factor in the uncertainties from both the supply and demand. This paper presents a holistic datadriven power optimization approach based on deep reinforcement learning (DRL) for microgrid control considering the multiple needs of decarbonization, sustainability and cost-efficiency. First, two data-driven control schemes, namely the prediction-based (PB) and prediction-free (PF) schemes, are devised to formulate the control problem within a Markov decision process (MDP). Second, a multivariate objective (reward) function is designed to account for the market profits, carbon emissions, peak load, and battery degradation of the microgrid system. Third, we develop a Double Dueling Deep Q Network (D3QN) architecture to optimize the power flows for real-time energy management and determine charging/discharging strategies of ESS. Finally, extensive simulations are conducted to demonstrate the effectiveness and superiority of the proposed approach through a comparative analysis. The results and analysis also suggest the respective circumstances for using the two control schemes in practical implementations with uncertainties.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2403.01013
- https://arxiv.org/pdf/2403.01013
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392490391
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392490391Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2403.01013Digital Object Identifier
- Title
-
A Holistic Power Optimization Approach for Microgrid Control Based on Deep Reinforcement LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-01Full publication date if available
- Authors
-
Fulong Yao, Wanqing Zhao, Matthew Forshaw, Yang SongList of authors in order
- Landing page
-
https://arxiv.org/abs/2403.01013Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2403.01013Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2403.01013Direct OA link when available
- Concepts
-
Reinforcement learning, Microgrid, Control (management), Computer science, Power (physics), Reinforcement, Artificial intelligence, Psychology, Social psychology, Physics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392490391 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2403.01013 |
| ids.doi | https://doi.org/10.48550/arxiv.2403.01013 |
| ids.openalex | https://openalex.org/W4392490391 |
| fwci | |
| type | preprint |
| title | A Holistic Power Optimization Approach for Microgrid Control Based on Deep Reinforcement Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10223 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9952999949455261 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Microgrid Control and Optimization |
| topics[1].id | https://openalex.org/T10603 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9944999814033508 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Smart Grid Energy Management |
| topics[2].id | https://openalex.org/T14444 |
| topics[2].field.id | https://openalex.org/fields/21 |
| topics[2].field.display_name | Energy |
| topics[2].score | 0.9804999828338623 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2102 |
| topics[2].subfield.display_name | Energy Engineering and Power Technology |
| topics[2].display_name | Power Systems and Renewable Energy |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C97541855 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8683943748474121 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[0].display_name | Reinforcement learning |
| concepts[1].id | https://openalex.org/C2776784348 |
| concepts[1].level | 3 |
| concepts[1].score | 0.8369748592376709 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5762595 |
| concepts[1].display_name | Microgrid |
| concepts[2].id | https://openalex.org/C2775924081 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5965301990509033 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[2].display_name | Control (management) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5121995806694031 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C163258240 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4919271469116211 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[4].display_name | Power (physics) |
| concepts[5].id | https://openalex.org/C67203356 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4767761528491974 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1321905 |
| concepts[5].display_name | Reinforcement |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4047691226005554 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C15744967 |
| concepts[7].level | 0 |
| concepts[7].score | 0.22357070446014404 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[7].display_name | Psychology |
| concepts[8].id | https://openalex.org/C77805123 |
| concepts[8].level | 1 |
| concepts[8].score | 0.09626847505569458 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q161272 |
| concepts[8].display_name | Social psychology |
| concepts[9].id | https://openalex.org/C121332964 |
| concepts[9].level | 0 |
| concepts[9].score | 0.054395437240600586 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[9].display_name | Physics |
| concepts[10].id | https://openalex.org/C62520636 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[10].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[0].score | 0.8683943748474121 |
| keywords[0].display_name | Reinforcement learning |
| keywords[1].id | https://openalex.org/keywords/microgrid |
| keywords[1].score | 0.8369748592376709 |
| keywords[1].display_name | Microgrid |
| keywords[2].id | https://openalex.org/keywords/control |
| keywords[2].score | 0.5965301990509033 |
| keywords[2].display_name | Control (management) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5121995806694031 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/power |
| keywords[4].score | 0.4919271469116211 |
| keywords[4].display_name | Power (physics) |
| keywords[5].id | https://openalex.org/keywords/reinforcement |
| keywords[5].score | 0.4767761528491974 |
| keywords[5].display_name | Reinforcement |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.4047691226005554 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/psychology |
| keywords[7].score | 0.22357070446014404 |
| keywords[7].display_name | Psychology |
| keywords[8].id | https://openalex.org/keywords/social-psychology |
| keywords[8].score | 0.09626847505569458 |
| keywords[8].display_name | Social psychology |
| keywords[9].id | https://openalex.org/keywords/physics |
| keywords[9].score | 0.054395437240600586 |
| keywords[9].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2403.01013 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | other-oa |
| locations[0].pdf_url | https://arxiv.org/pdf/2403.01013 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/other-oa |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2403.01013 |
| locations[1].id | doi:10.48550/arxiv.2403.01013 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2403.01013 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5062700378 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Fulong Yao |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yao, Fulong |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5066572238 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7622-0665 |
| authorships[1].author.display_name | Wanqing Zhao |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhao, Wanqing |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5049671608 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7014-9837 |
| authorships[2].author.display_name | Matthew Forshaw |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Forshaw, Matthew |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100688425 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7992-7233 |
| authorships[3].author.display_name | Yang Song |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Song, Yang |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2403.01013 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-03-06T00:00:00 |
| display_name | A Holistic Power Optimization Approach for Microgrid Control Based on Deep Reinforcement Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10223 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9952999949455261 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Microgrid Control and Optimization |
| related_works | https://openalex.org/W1574359403, https://openalex.org/W2057975886, https://openalex.org/W4308700935, https://openalex.org/W4210780382, https://openalex.org/W2356033827, https://openalex.org/W2391138633, https://openalex.org/W4206134051, https://openalex.org/W2907234787, https://openalex.org/W4285503559, https://openalex.org/W4383747562 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2403.01013 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2403.01013 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2403.01013 |
| primary_location.id | pmh:oai:arXiv.org:2403.01013 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | other-oa |
| primary_location.pdf_url | https://arxiv.org/pdf/2403.01013 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/other-oa |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2403.01013 |
| publication_date | 2024-03-01 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.Q | 158 |
| abstract_inverted_index.a | 6, 32, 47, 76, 121, 127, 154, 193 |
| abstract_inverted_index.In | 13 |
| abstract_inverted_index.an | 42 |
| abstract_inverted_index.as | 31 |
| abstract_inverted_index.in | 64, 211 |
| abstract_inverted_index.is | 4, 132 |
| abstract_inverted_index.of | 40, 50, 95, 147, 175, 188 |
| abstract_inverted_index.on | 83 |
| abstract_inverted_index.to | 58, 62, 115, 134, 162, 182 |
| abstract_inverted_index.we | 152 |
| abstract_inverted_index.The | 0, 196 |
| abstract_inverted_index.and | 11, 24, 54, 71, 98, 109, 144, 171, 186, 198 |
| abstract_inverted_index.are | 113, 180 |
| abstract_inverted_index.for | 88, 136, 167, 205 |
| abstract_inverted_index.not | 57 |
| abstract_inverted_index.the | 37, 60, 65, 69, 92, 106, 117, 137, 148, 164, 184, 189, 202, 207 |
| abstract_inverted_index.two | 101, 208 |
| abstract_inverted_index.(PB) | 108 |
| abstract_inverted_index.(PF) | 111 |
| abstract_inverted_index.Deep | 157 |
| abstract_inverted_index.ESS. | 176 |
| abstract_inverted_index.This | 73 |
| abstract_inverted_index.also | 200 |
| abstract_inverted_index.both | 68 |
| abstract_inverted_index.deep | 84 |
| abstract_inverted_index.from | 67 |
| abstract_inverted_index.have | 29 |
| abstract_inverted_index.need | 61 |
| abstract_inverted_index.peak | 142 |
| abstract_inverted_index.such | 41 |
| abstract_inverted_index.this | 14 |
| abstract_inverted_index.view | 49 |
| abstract_inverted_index.with | 19, 214 |
| abstract_inverted_index.(DRL) | 87 |
| abstract_inverted_index.(ESS) | 28 |
| abstract_inverted_index.(RES) | 23 |
| abstract_inverted_index.based | 82 |
| abstract_inverted_index.flows | 166 |
| abstract_inverted_index.lacks | 46 |
| abstract_inverted_index.load, | 143 |
| abstract_inverted_index.needs | 94 |
| abstract_inverted_index.paper | 74 |
| abstract_inverted_index.power | 79, 165 |
| abstract_inverted_index.using | 206 |
| abstract_inverted_index.(D3QN) | 160 |
| abstract_inverted_index.(MDP). | 125 |
| abstract_inverted_index.Double | 155 |
| abstract_inverted_index.First, | 100 |
| abstract_inverted_index.Markov | 122 |
| abstract_inverted_index.Third, | 151 |
| abstract_inverted_index.carbon | 140 |
| abstract_inverted_index.energy | 2, 21, 25, 44, 169 |
| abstract_inverted_index.factor | 63 |
| abstract_inverted_index.global | 1 |
| abstract_inverted_index.market | 138 |
| abstract_inverted_index.namely | 105 |
| abstract_inverted_index.supply | 70 |
| abstract_inverted_index.system | 45 |
| abstract_inverted_index.within | 120 |
| abstract_inverted_index.Dueling | 156 |
| abstract_inverted_index.Network | 159 |
| abstract_inverted_index.Second, | 126 |
| abstract_inverted_index.account | 135 |
| abstract_inverted_index.battery | 145 |
| abstract_inverted_index.control | 39, 90, 103, 118, 209 |
| abstract_inverted_index.crucial | 33 |
| abstract_inverted_index.demand. | 72 |
| abstract_inverted_index.develop | 153 |
| abstract_inverted_index.devised | 114 |
| abstract_inverted_index.emerged | 30 |
| abstract_inverted_index.mention | 59 |
| abstract_inverted_index.problem | 119 |
| abstract_inverted_index.process | 124 |
| abstract_inverted_index.results | 197 |
| abstract_inverted_index.schemes | 210 |
| abstract_inverted_index.sources | 22 |
| abstract_inverted_index.storage | 26 |
| abstract_inverted_index.suggest | 201 |
| abstract_inverted_index.system. | 150 |
| abstract_inverted_index.systems | 17, 27 |
| abstract_inverted_index.through | 192 |
| abstract_inverted_index.towards | 8 |
| abstract_inverted_index.(reward) | 130 |
| abstract_inverted_index.Finally, | 177 |
| abstract_inverted_index.However, | 35 |
| abstract_inverted_index.analysis | 199 |
| abstract_inverted_index.approach | 81, 191 |
| abstract_inverted_index.decision | 123 |
| abstract_inverted_index.designed | 133 |
| abstract_inverted_index.economic | 55 |
| abstract_inverted_index.function | 131 |
| abstract_inverted_index.holistic | 48, 77 |
| abstract_inverted_index.learning | 86 |
| abstract_inverted_index.multiple | 51, 93 |
| abstract_inverted_index.optimize | 163 |
| abstract_inverted_index.presents | 75 |
| abstract_inverted_index.profits, | 139 |
| abstract_inverted_index.proposed | 190 |
| abstract_inverted_index.schemes, | 104, 112 |
| abstract_inverted_index.analysis. | 195 |
| abstract_inverted_index.conducted | 181 |
| abstract_inverted_index.determine | 172 |
| abstract_inverted_index.extensive | 178 |
| abstract_inverted_index.formulate | 116 |
| abstract_inverted_index.landscape | 3 |
| abstract_inverted_index.microgrid | 16, 89, 149 |
| abstract_inverted_index.objective | 129 |
| abstract_inverted_index.practical | 212 |
| abstract_inverted_index.real-time | 168 |
| abstract_inverted_index.renewable | 20 |
| abstract_inverted_index.component. | 34 |
| abstract_inverted_index.datadriven | 78 |
| abstract_inverted_index.emissions, | 141 |
| abstract_inverted_index.integrated | 18, 43 |
| abstract_inverted_index.management | 170 |
| abstract_inverted_index.optimizing | 36 |
| abstract_inverted_index.respective | 203 |
| abstract_inverted_index.strategies | 174 |
| abstract_inverted_index.undergoing | 5 |
| abstract_inverted_index.comparative | 194 |
| abstract_inverted_index.considering | 91 |
| abstract_inverted_index.data-driven | 102 |
| abstract_inverted_index.degradation | 146 |
| abstract_inverted_index.demonstrate | 183 |
| abstract_inverted_index.operational | 38 |
| abstract_inverted_index.simulations | 179 |
| abstract_inverted_index.superiority | 187 |
| abstract_inverted_index.transition, | 15 |
| abstract_inverted_index.architecture | 161 |
| abstract_inverted_index.multivariate | 128 |
| abstract_inverted_index.optimization | 80 |
| abstract_inverted_index.circumstances | 204 |
| abstract_inverted_index.effectiveness | 185 |
| abstract_inverted_index.reinforcement | 85 |
| abstract_inverted_index.uncertainties | 66 |
| abstract_inverted_index.environmental, | 52 |
| abstract_inverted_index.sustainability | 97 |
| abstract_inverted_index.transformation | 7 |
| abstract_inverted_index.uncertainties. | 215 |
| abstract_inverted_index.considerations, | 56 |
| abstract_inverted_index.implementations | 213 |
| abstract_inverted_index.infrastructural | 53 |
| abstract_inverted_index.prediction-free | 110 |
| abstract_inverted_index.sustainability, | 10 |
| abstract_inverted_index.cost-efficiency. | 12, 99 |
| abstract_inverted_index.decarbonization, | 9, 96 |
| abstract_inverted_index.prediction-based | 107 |
| abstract_inverted_index.charging/discharging | 173 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |