A Hybrid Approach for CBIR using SVM Classifier, Partical Swarm Optimizer with Mahalanobis Formula Article Swipe
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.5120/19587-1349
The goal of content-based image retrieval is to retrieve the images that as per the user query.Mainly the Content based Image retrieval technique attempt to search through the database that finds images that are perceptually similar to a given query image.Set of low-Level visual features (Color, Shape and Texture) are used to represent an image in most modern content based image retrieval systems.Therefore, a gap exists between low-level visual features and information of high-level perception, which is the main reason that down the improvement of the image retrieval accuracy.To retrieve several features of images and shorten the semantic gap between low-level visual feature and high-level perception a Hybrid support vector machine (SVM) scheme is proposed in this paper.Image data set is taken from coral image data set.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- http://doi.org/10.5120/19587-1349
- https://doi.org/10.5120/19587-1349
- OA Status
- bronze
- Cited By
- 2
- References
- 23
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2123432939
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2123432939Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5120/19587-1349Digital Object Identifier
- Title
-
A Hybrid Approach for CBIR using SVM Classifier, Partical Swarm Optimizer with Mahalanobis FormulaWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2015Year of publication
- Publication date
-
2015-02-18Full publication date if available
- Authors
-
Amit Prakash Singh, Parag Sohoni, Manoj Kumar M VList of authors in order
- Landing page
-
https://doi.org/10.5120/19587-1349Publisher landing page
- PDF URL
-
https://doi.org/10.5120/19587-1349Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5120/19587-1349Direct OA link when available
- Concepts
-
Mahalanobis distance, Computer science, Classifier (UML), Artificial intelligence, Support vector machine, Machine learning, Swarm behaviour, Pattern recognition (psychology)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 1, 2019: 1Per-year citation counts (last 5 years)
- References (count)
-
23Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2123432939 |
|---|---|
| doi | https://doi.org/10.5120/19587-1349 |
| ids.doi | https://doi.org/10.5120/19587-1349 |
| ids.mag | 2123432939 |
| ids.openalex | https://openalex.org/W2123432939 |
| fwci | 0.0 |
| type | article |
| title | A Hybrid Approach for CBIR using SVM Classifier, Partical Swarm Optimizer with Mahalanobis Formula |
| biblio.issue | 12 |
| biblio.volume | 111 |
| biblio.last_page | 5 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T10824 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Image Retrieval and Classification Techniques |
| topics[1].id | https://openalex.org/T10627 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9977999925613403 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Image and Video Retrieval Techniques |
| topics[2].id | https://openalex.org/T10689 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9842000007629395 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Remote-Sensing Image Classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C1921717 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8955703377723694 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1334846 |
| concepts[0].display_name | Mahalanobis distance |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.8457919359207153 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C95623464 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6906326413154602 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[2].display_name | Classifier (UML) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5325868129730225 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C12267149 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5258565545082092 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[4].display_name | Support vector machine |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.47910407185554504 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C181335050 |
| concepts[6].level | 2 |
| concepts[6].score | 0.42949971556663513 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q14915018 |
| concepts[6].display_name | Swarm behaviour |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4126891791820526 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| keywords[0].id | https://openalex.org/keywords/mahalanobis-distance |
| keywords[0].score | 0.8955703377723694 |
| keywords[0].display_name | Mahalanobis distance |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.8457919359207153 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/classifier |
| keywords[2].score | 0.6906326413154602 |
| keywords[2].display_name | Classifier (UML) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5325868129730225 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/support-vector-machine |
| keywords[4].score | 0.5258565545082092 |
| keywords[4].display_name | Support vector machine |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.47910407185554504 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/swarm-behaviour |
| keywords[6].score | 0.42949971556663513 |
| keywords[6].display_name | Swarm behaviour |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.4126891791820526 |
| keywords[7].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | doi:10.5120/19587-1349 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210206007 |
| locations[0].source.issn | 0975-8887 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0975-8887 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Computer Applications |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | https://doi.org/10.5120/19587-1349 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Computer Applications |
| locations[0].landing_page_url | http://doi.org/10.5120/19587-1349 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5008002283 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8675-6903 |
| authorships[0].author.display_name | Amit Prakash Singh |
| authorships[0].affiliations[0].raw_affiliation_string | Department of CSE LNCTS Bhopal, (INDIA) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Amit Singh |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of CSE LNCTS Bhopal, (INDIA) |
| authorships[1].author.id | https://openalex.org/A5068102822 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Parag Sohoni |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Sc. and Engineering LNCTS Bhopal, (INDIA) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Parag Sohoni |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Sc. and Engineering LNCTS Bhopal, (INDIA) |
| authorships[2].author.id | https://openalex.org/A5028918215 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Manoj Kumar M V |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Sc. and Engineering, LNCTS Bhopal (INDIA |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Manoj Kumar |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Sc. and Engineering, LNCTS Bhopal (INDIA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5120/19587-1349 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Hybrid Approach for CBIR using SVM Classifier, Partical Swarm Optimizer with Mahalanobis Formula |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10824 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Image Retrieval and Classification Techniques |
| related_works | https://openalex.org/W4382795578, https://openalex.org/W2355463328, https://openalex.org/W1431147547, https://openalex.org/W2402648945, https://openalex.org/W2053213469, https://openalex.org/W2055761197, https://openalex.org/W2057608111, https://openalex.org/W939486154, https://openalex.org/W2771741613, https://openalex.org/W2262622710 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2019 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5120/19587-1349 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210206007 |
| best_oa_location.source.issn | 0975-8887 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0975-8887 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Computer Applications |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://doi.org/10.5120/19587-1349 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Computer Applications |
| best_oa_location.landing_page_url | http://doi.org/10.5120/19587-1349 |
| primary_location.id | doi:10.5120/19587-1349 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210206007 |
| primary_location.source.issn | 0975-8887 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0975-8887 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Computer Applications |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | https://doi.org/10.5120/19587-1349 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Computer Applications |
| primary_location.landing_page_url | http://doi.org/10.5120/19587-1349 |
| publication_date | 2015-02-18 |
| publication_year | 2015 |
| referenced_works | https://openalex.org/W2155877764, https://openalex.org/W2310714561, https://openalex.org/W2127635987, https://openalex.org/W930173475, https://openalex.org/W2925011131, https://openalex.org/W2130660124, https://openalex.org/W2190651082, https://openalex.org/W1993862647, https://openalex.org/W6674146846, https://openalex.org/W2584600864, https://openalex.org/W4285719527, https://openalex.org/W4205715029, https://openalex.org/W2093918537, https://openalex.org/W2160550980, https://openalex.org/W633685421, https://openalex.org/W2031096531, https://openalex.org/W2066863882, https://openalex.org/W4237065586, https://openalex.org/W2138079527, https://openalex.org/W2320930955, https://openalex.org/W1787721707, https://openalex.org/W3208484083, https://openalex.org/W2397803618 |
| referenced_works_count | 23 |
| abstract_inverted_index.a | 37, 63, 106 |
| abstract_inverted_index.an | 53 |
| abstract_inverted_index.as | 12 |
| abstract_inverted_index.in | 55, 115 |
| abstract_inverted_index.is | 6, 76, 113, 120 |
| abstract_inverted_index.of | 2, 41, 72, 84, 92 |
| abstract_inverted_index.to | 7, 24, 36, 51 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 47, 70, 94, 103 |
| abstract_inverted_index.are | 33, 49 |
| abstract_inverted_index.gap | 64, 98 |
| abstract_inverted_index.per | 13 |
| abstract_inverted_index.set | 119 |
| abstract_inverted_index.the | 9, 14, 17, 27, 77, 82, 85, 96 |
| abstract_inverted_index.data | 118, 125 |
| abstract_inverted_index.down | 81 |
| abstract_inverted_index.from | 122 |
| abstract_inverted_index.goal | 1 |
| abstract_inverted_index.main | 78 |
| abstract_inverted_index.most | 56 |
| abstract_inverted_index.set. | 126 |
| abstract_inverted_index.that | 11, 29, 32, 80 |
| abstract_inverted_index.this | 116 |
| abstract_inverted_index.used | 50 |
| abstract_inverted_index.user | 15 |
| abstract_inverted_index.(SVM) | 111 |
| abstract_inverted_index.Image | 20 |
| abstract_inverted_index.Shape | 46 |
| abstract_inverted_index.based | 19, 59 |
| abstract_inverted_index.coral | 123 |
| abstract_inverted_index.finds | 30 |
| abstract_inverted_index.given | 38 |
| abstract_inverted_index.image | 4, 54, 60, 86, 124 |
| abstract_inverted_index.query | 39 |
| abstract_inverted_index.taken | 121 |
| abstract_inverted_index.which | 75 |
| abstract_inverted_index.Hybrid | 107 |
| abstract_inverted_index.exists | 65 |
| abstract_inverted_index.images | 10, 31, 93 |
| abstract_inverted_index.modern | 57 |
| abstract_inverted_index.reason | 79 |
| abstract_inverted_index.scheme | 112 |
| abstract_inverted_index.search | 25 |
| abstract_inverted_index.vector | 109 |
| abstract_inverted_index.visual | 43, 68, 101 |
| abstract_inverted_index.(Color, | 45 |
| abstract_inverted_index.Content | 18 |
| abstract_inverted_index.attempt | 23 |
| abstract_inverted_index.between | 66, 99 |
| abstract_inverted_index.content | 58 |
| abstract_inverted_index.feature | 102 |
| abstract_inverted_index.machine | 110 |
| abstract_inverted_index.several | 90 |
| abstract_inverted_index.shorten | 95 |
| abstract_inverted_index.similar | 35 |
| abstract_inverted_index.support | 108 |
| abstract_inverted_index.through | 26 |
| abstract_inverted_index.Texture) | 48 |
| abstract_inverted_index.database | 28 |
| abstract_inverted_index.features | 44, 69, 91 |
| abstract_inverted_index.proposed | 114 |
| abstract_inverted_index.retrieve | 8, 89 |
| abstract_inverted_index.semantic | 97 |
| abstract_inverted_index.image.Set | 40 |
| abstract_inverted_index.low-Level | 42 |
| abstract_inverted_index.low-level | 67, 100 |
| abstract_inverted_index.represent | 52 |
| abstract_inverted_index.retrieval | 5, 21, 61, 87 |
| abstract_inverted_index.technique | 22 |
| abstract_inverted_index.high-level | 73, 104 |
| abstract_inverted_index.perception | 105 |
| abstract_inverted_index.accuracy.To | 88 |
| abstract_inverted_index.improvement | 83 |
| abstract_inverted_index.information | 71 |
| abstract_inverted_index.paper.Image | 117 |
| abstract_inverted_index.perception, | 74 |
| abstract_inverted_index.perceptually | 34 |
| abstract_inverted_index.query.Mainly | 16 |
| abstract_inverted_index.content-based | 3 |
| abstract_inverted_index.systems.Therefore, | 62 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.07787027 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |