A hybrid approach for predicting multi-label subcellular localization of mRNA at genome scale Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1101/2023.01.17.524365
In the past, number of methods have been developed for predicting single label subcellular localization of mRNA in a cell. Only limited methods had been built to predict multi-label subcellular localization of mRNA. Most of the existing methods are slow and cannot be implemented at transcriptome scale. In this study, a fast and reliable method had been developed for predicting multi-label subcellular localization of mRNA that can be implemented at genome scale. Firstly, deep learning method based on convolutional neural network method have been developed using one-hot encoding and attained an average AUROC - 0.584 (0.543 – 0.605). Secondly, machine learning based methods have been developed using mRNA sequence composition, our XGBoost classifier achieved an average AUROC - 0.709 (0.668 - 0.732). In addition to alignment free methods, we also developed alignment-based methods using similarity and motif search techniques. Finally, a hybrid technique has been developed that combine XGBoost models and motif-based searching and achieved an average AUROC 0.742 (0.708 - 0.816). Our method – MRSLpred, developed in this study is complementary to the existing method. One of the major advantages of our method over existing methods is its speed, it can scan all mRNA of a transcriptome in few hours. A publicly accessible webserver and a standalone tool has been developed to facilitate researchers (Webserver: https://webs.iiitd.edu.in/raghava/mrslpred/ ). Key Points Prediction of Subcellular localization of mRNA Classification of mRNA based on Motif and BLAST search Combination of alignment based and alignment free techniques A fast method for subcellular localization of mRNA A web server and standalone software
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2023.01.17.524365
- https://www.biorxiv.org/content/biorxiv/early/2023/01/19/2023.01.17.524365.full.pdf
- OA Status
- green
- Cited By
- 1
- References
- 24
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4317497639
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4317497639Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2023.01.17.524365Digital Object Identifier
- Title
-
A hybrid approach for predicting multi-label subcellular localization of mRNA at genome scaleWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-19Full publication date if available
- Authors
-
Shubham Choudhury, Nisha Bajiya, Sumeet Patiyal, Gajendra P. S. RaghavaList of authors in order
- Landing page
-
https://doi.org/10.1101/2023.01.17.524365Publisher landing page
- PDF URL
-
https://www.biorxiv.org/content/biorxiv/early/2023/01/19/2023.01.17.524365.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.biorxiv.org/content/biorxiv/early/2023/01/19/2023.01.17.524365.full.pdfDirect OA link when available
- Concepts
-
Computer science, Artificial intelligence, Subcellular localization, Classifier (UML), Computational biology, Convolutional neural network, Genome, Pattern recognition (psychology), Data mining, Biology, Gene, GeneticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1Per-year citation counts (last 5 years)
- References (count)
-
24Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4317497639 |
|---|---|
| doi | https://doi.org/10.1101/2023.01.17.524365 |
| ids.doi | https://doi.org/10.1101/2023.01.17.524365 |
| ids.openalex | https://openalex.org/W4317497639 |
| fwci | 0.18567041 |
| type | preprint |
| title | A hybrid approach for predicting multi-label subcellular localization of mRNA at genome scale |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10521 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | RNA and protein synthesis mechanisms |
| topics[1].id | https://openalex.org/T10015 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9991999864578247 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Genomics and Phylogenetic Studies |
| topics[2].id | https://openalex.org/T12254 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9988999962806702 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Machine Learning in Bioinformatics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6370969414710999 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5948983430862427 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C2776879804 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5797285437583923 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7630919 |
| concepts[2].display_name | Subcellular localization |
| concepts[3].id | https://openalex.org/C95623464 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5631536841392517 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[3].display_name | Classifier (UML) |
| concepts[4].id | https://openalex.org/C70721500 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5381288528442383 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[4].display_name | Computational biology |
| concepts[5].id | https://openalex.org/C81363708 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5011835098266602 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[5].display_name | Convolutional neural network |
| concepts[6].id | https://openalex.org/C141231307 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4811623990535736 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7020 |
| concepts[6].display_name | Genome |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4665617048740387 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3314117193222046 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C86803240 |
| concepts[9].level | 0 |
| concepts[9].score | 0.28013360500335693 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[9].display_name | Biology |
| concepts[10].id | https://openalex.org/C104317684 |
| concepts[10].level | 2 |
| concepts[10].score | 0.25240421295166016 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[10].display_name | Gene |
| concepts[11].id | https://openalex.org/C54355233 |
| concepts[11].level | 1 |
| concepts[11].score | 0.12885043025016785 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[11].display_name | Genetics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6370969414710999 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.5948983430862427 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/subcellular-localization |
| keywords[2].score | 0.5797285437583923 |
| keywords[2].display_name | Subcellular localization |
| keywords[3].id | https://openalex.org/keywords/classifier |
| keywords[3].score | 0.5631536841392517 |
| keywords[3].display_name | Classifier (UML) |
| keywords[4].id | https://openalex.org/keywords/computational-biology |
| keywords[4].score | 0.5381288528442383 |
| keywords[4].display_name | Computational biology |
| keywords[5].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[5].score | 0.5011835098266602 |
| keywords[5].display_name | Convolutional neural network |
| keywords[6].id | https://openalex.org/keywords/genome |
| keywords[6].score | 0.4811623990535736 |
| keywords[6].display_name | Genome |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.4665617048740387 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.3314117193222046 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/biology |
| keywords[9].score | 0.28013360500335693 |
| keywords[9].display_name | Biology |
| keywords[10].id | https://openalex.org/keywords/gene |
| keywords[10].score | 0.25240421295166016 |
| keywords[10].display_name | Gene |
| keywords[11].id | https://openalex.org/keywords/genetics |
| keywords[11].score | 0.12885043025016785 |
| keywords[11].display_name | Genetics |
| language | en |
| locations[0].id | doi:10.1101/2023.01.17.524365 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | |
| locations[0].pdf_url | https://www.biorxiv.org/content/biorxiv/early/2023/01/19/2023.01.17.524365.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2023.01.17.524365 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5051161969 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4509-4683 |
| authorships[0].author.display_name | Shubham Choudhury |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I119939252 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi-110020, India |
| authorships[0].institutions[0].id | https://openalex.org/I119939252 |
| authorships[0].institutions[0].ror | https://ror.org/03vfp4g33 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I119939252 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Indraprastha Institute of Information Technology Delhi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shubham Choudhury |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi-110020, India |
| authorships[1].author.id | https://openalex.org/A5058212884 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5075-5386 |
| authorships[1].author.display_name | Nisha Bajiya |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I119939252 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi-110020, India |
| authorships[1].institutions[0].id | https://openalex.org/I119939252 |
| authorships[1].institutions[0].ror | https://ror.org/03vfp4g33 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I119939252 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Indraprastha Institute of Information Technology Delhi |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Nisha Bajiya |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi-110020, India |
| authorships[2].author.id | https://openalex.org/A5048158238 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1358-292X |
| authorships[2].author.display_name | Sumeet Patiyal |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I119939252 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi-110020, India |
| authorships[2].institutions[0].id | https://openalex.org/I119939252 |
| authorships[2].institutions[0].ror | https://ror.org/03vfp4g33 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I119939252 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Indraprastha Institute of Information Technology Delhi |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sumeet Patiyal |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi-110020, India |
| authorships[3].author.id | https://openalex.org/A5051938893 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8902-2876 |
| authorships[3].author.display_name | Gajendra P. S. Raghava |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I119939252 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi-110020, India |
| authorships[3].institutions[0].id | https://openalex.org/I119939252 |
| authorships[3].institutions[0].ror | https://ror.org/03vfp4g33 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I119939252 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Indraprastha Institute of Information Technology Delhi |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Gajendra P. S. Raghava |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi-110020, India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.biorxiv.org/content/biorxiv/early/2023/01/19/2023.01.17.524365.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A hybrid approach for predicting multi-label subcellular localization of mRNA at genome scale |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10521 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | RNA and protein synthesis mechanisms |
| related_works | https://openalex.org/W4366498163, https://openalex.org/W2359834996, https://openalex.org/W2384565783, https://openalex.org/W2119797331, https://openalex.org/W4293226380, https://openalex.org/W4282922129, https://openalex.org/W1964033480, https://openalex.org/W2099701744, https://openalex.org/W2375119535, https://openalex.org/W4322772305 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2023.01.17.524365 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2023/01/19/2023.01.17.524365.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2023.01.17.524365 |
| primary_location.id | doi:10.1101/2023.01.17.524365 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | |
| primary_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2023/01/19/2023.01.17.524365.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2023.01.17.524365 |
| publication_date | 2023-01-19 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3124828689, https://openalex.org/W1985316936, https://openalex.org/W2980905125, https://openalex.org/W2038443908, https://openalex.org/W2810876096, https://openalex.org/W2117595639, https://openalex.org/W1964177189, https://openalex.org/W3144893534, https://openalex.org/W2031408226, https://openalex.org/W2036789528, https://openalex.org/W3004263072, https://openalex.org/W2167898988, https://openalex.org/W3206477596, https://openalex.org/W2508362099, https://openalex.org/W3199924206, https://openalex.org/W2949674037, https://openalex.org/W2892090532, https://openalex.org/W2962655813, https://openalex.org/W3026307143, https://openalex.org/W4200038759, https://openalex.org/W2101005439, https://openalex.org/W2150772314, https://openalex.org/W2163482144, https://openalex.org/W2178366634 |
| referenced_works_count | 24 |
| abstract_inverted_index.- | 94, 118, 121, 161 |
| abstract_inverted_index.A | 202, 244, 252 |
| abstract_inverted_index.a | 19, 51, 141, 197, 207 |
| abstract_inverted_index.). | 218 |
| abstract_inverted_index.In | 1, 48, 123 |
| abstract_inverted_index.an | 91, 115, 156 |
| abstract_inverted_index.at | 45, 70 |
| abstract_inverted_index.be | 43, 68 |
| abstract_inverted_index.in | 18, 168, 199 |
| abstract_inverted_index.is | 171, 188 |
| abstract_inverted_index.it | 191 |
| abstract_inverted_index.of | 5, 16, 32, 35, 64, 178, 182, 196, 222, 225, 228, 237, 250 |
| abstract_inverted_index.on | 78, 231 |
| abstract_inverted_index.to | 27, 125, 173, 213 |
| abstract_inverted_index.we | 129 |
| abstract_inverted_index.Key | 219 |
| abstract_inverted_index.One | 177 |
| abstract_inverted_index.Our | 163 |
| abstract_inverted_index.all | 194 |
| abstract_inverted_index.and | 41, 53, 89, 136, 151, 154, 206, 233, 240, 255 |
| abstract_inverted_index.are | 39 |
| abstract_inverted_index.can | 67, 192 |
| abstract_inverted_index.few | 200 |
| abstract_inverted_index.for | 10, 59, 247 |
| abstract_inverted_index.had | 24, 56 |
| abstract_inverted_index.has | 144, 210 |
| abstract_inverted_index.its | 189 |
| abstract_inverted_index.our | 111, 183 |
| abstract_inverted_index.the | 2, 36, 174, 179 |
| abstract_inverted_index.web | 253 |
| abstract_inverted_index.– | 97, 165 |
| abstract_inverted_index.Most | 34 |
| abstract_inverted_index.Only | 21 |
| abstract_inverted_index.also | 130 |
| abstract_inverted_index.been | 8, 25, 57, 84, 105, 145, 211 |
| abstract_inverted_index.deep | 74 |
| abstract_inverted_index.fast | 52, 245 |
| abstract_inverted_index.free | 127, 242 |
| abstract_inverted_index.have | 7, 83, 104 |
| abstract_inverted_index.mRNA | 17, 65, 108, 195, 226, 229, 251 |
| abstract_inverted_index.over | 185 |
| abstract_inverted_index.scan | 193 |
| abstract_inverted_index.slow | 40 |
| abstract_inverted_index.that | 66, 147 |
| abstract_inverted_index.this | 49, 169 |
| abstract_inverted_index.tool | 209 |
| abstract_inverted_index.0.584 | 95 |
| abstract_inverted_index.0.709 | 119 |
| abstract_inverted_index.0.742 | 159 |
| abstract_inverted_index.AUROC | 93, 117, 158 |
| abstract_inverted_index.BLAST | 234 |
| abstract_inverted_index.Motif | 232 |
| abstract_inverted_index.based | 77, 102, 230, 239 |
| abstract_inverted_index.built | 26 |
| abstract_inverted_index.cell. | 20 |
| abstract_inverted_index.label | 13 |
| abstract_inverted_index.mRNA. | 33 |
| abstract_inverted_index.major | 180 |
| abstract_inverted_index.motif | 137 |
| abstract_inverted_index.past, | 3 |
| abstract_inverted_index.study | 170 |
| abstract_inverted_index.using | 86, 107, 134 |
| abstract_inverted_index.(0.543 | 96 |
| abstract_inverted_index.(0.668 | 120 |
| abstract_inverted_index.(0.708 | 160 |
| abstract_inverted_index.Points | 220 |
| abstract_inverted_index.cannot | 42 |
| abstract_inverted_index.genome | 71 |
| abstract_inverted_index.hours. | 201 |
| abstract_inverted_index.hybrid | 142 |
| abstract_inverted_index.method | 55, 76, 82, 164, 184, 246 |
| abstract_inverted_index.models | 150 |
| abstract_inverted_index.neural | 80 |
| abstract_inverted_index.number | 4 |
| abstract_inverted_index.scale. | 47, 72 |
| abstract_inverted_index.search | 138, 235 |
| abstract_inverted_index.server | 254 |
| abstract_inverted_index.single | 12 |
| abstract_inverted_index.speed, | 190 |
| abstract_inverted_index.study, | 50 |
| abstract_inverted_index.0.605). | 98 |
| abstract_inverted_index.0.732). | 122 |
| abstract_inverted_index.0.816). | 162 |
| abstract_inverted_index.XGBoost | 112, 149 |
| abstract_inverted_index.average | 92, 116, 157 |
| abstract_inverted_index.combine | 148 |
| abstract_inverted_index.limited | 22 |
| abstract_inverted_index.machine | 100 |
| abstract_inverted_index.method. | 176 |
| abstract_inverted_index.methods | 6, 23, 38, 103, 133, 187 |
| abstract_inverted_index.network | 81 |
| abstract_inverted_index.one-hot | 87 |
| abstract_inverted_index.predict | 28 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Finally, | 140 |
| abstract_inverted_index.Firstly, | 73 |
| abstract_inverted_index.achieved | 114, 155 |
| abstract_inverted_index.addition | 124 |
| abstract_inverted_index.attained | 90 |
| abstract_inverted_index.encoding | 88 |
| abstract_inverted_index.existing | 37, 175, 186 |
| abstract_inverted_index.learning | 75, 101 |
| abstract_inverted_index.methods, | 128 |
| abstract_inverted_index.publicly | 203 |
| abstract_inverted_index.reliable | 54 |
| abstract_inverted_index.sequence | 109 |
| abstract_inverted_index.software | 257 |
| abstract_inverted_index.MRSLpred, | 166 |
| abstract_inverted_index.Secondly, | 99 |
| abstract_inverted_index.alignment | 126, 238, 241 |
| abstract_inverted_index.developed | 9, 58, 85, 106, 131, 146, 167, 212 |
| abstract_inverted_index.searching | 153 |
| abstract_inverted_index.technique | 143 |
| abstract_inverted_index.webserver | 205 |
| abstract_inverted_index.Prediction | 221 |
| abstract_inverted_index.accessible | 204 |
| abstract_inverted_index.advantages | 181 |
| abstract_inverted_index.classifier | 113 |
| abstract_inverted_index.facilitate | 214 |
| abstract_inverted_index.predicting | 11, 60 |
| abstract_inverted_index.similarity | 135 |
| abstract_inverted_index.standalone | 208, 256 |
| abstract_inverted_index.techniques | 243 |
| abstract_inverted_index.(Webserver: | 216 |
| abstract_inverted_index.Combination | 236 |
| abstract_inverted_index.Subcellular | 223 |
| abstract_inverted_index.implemented | 44, 69 |
| abstract_inverted_index.motif-based | 152 |
| abstract_inverted_index.multi-label | 29, 61 |
| abstract_inverted_index.researchers | 215 |
| abstract_inverted_index.subcellular | 14, 30, 62, 248 |
| abstract_inverted_index.techniques. | 139 |
| abstract_inverted_index.composition, | 110 |
| abstract_inverted_index.localization | 15, 31, 63, 224, 249 |
| abstract_inverted_index.complementary | 172 |
| abstract_inverted_index.convolutional | 79 |
| abstract_inverted_index.transcriptome | 46, 198 |
| abstract_inverted_index.Classification | 227 |
| abstract_inverted_index.alignment-based | 132 |
| abstract_inverted_index.https://webs.iiitd.edu.in/raghava/mrslpred/ | 217 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5051938893 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I119939252 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/17 |
| sustainable_development_goals[0].score | 0.4000000059604645 |
| sustainable_development_goals[0].display_name | Partnerships for the goals |
| citation_normalized_percentile.value | 0.55999854 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |