A Hybrid Deep Learning Model Using CNN and K-Mean Clustering for Energy Efficient Modelling in Mobile EdgeIoT Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/electronics12061384
In mobile edge computing (MEC), it is difficult to recognise an optimum solution that can perform in limited energy by selecting the best communication path and components. This research proposed a hybrid model for energy-efficient cluster formation and a head selection (E-CFSA) algorithm based on convolutional neural networks (CNNs) and a modified k-mean clustering (MKM) method for MEC. We utilised a CNN to determine the best-transferring strategy and the most efficient partitioning of a specific task. The MKM method has more than one cluster head in each cluster to lead. It also reduces the number of reclustering cycles, which helps to overcome the energy consumption and delay during the reclustering process. The proposed model determines a training dataset by covering all the aspects of cost function calculation. This training dataset helps to train the model, which allows for efficient decision-making in optimum energy usage. In MEC, clusters have a dynamic nature and frequently change their location. Sometimes, this creates hurdles for the clusters to form a cluster head and, finally, abandons the cluster. The selected cluster heads must be recognised correctly and applied to maintain and supervise the clusters. The proposed pairing of the modified k-means method with a CNN fulfils this objective. The proposed method, existing weighted clustering algorithm (WCA), and agent-based secure enhanced performance approach (AB-SEP) are tested over the network dataset. The findings of our experiment demonstrate that the proposed hybrid model is promising in aspects of CD energy consumption, overhead, packet loss rate, packet delivery ratio, and throughput compared to existing approaches.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/electronics12061384
- https://www.mdpi.com/2079-9292/12/6/1384/pdf?version=1681115117
- OA Status
- gold
- Cited By
- 18
- References
- 40
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4324140942
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4324140942Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/electronics12061384Digital Object Identifier
- Title
-
A Hybrid Deep Learning Model Using CNN and K-Mean Clustering for Energy Efficient Modelling in Mobile EdgeIoTWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-03-14Full publication date if available
- Authors
-
Dhananjay Bisen, Umesh Kumar Lilhore, Poongodi Manoharan, Fadl Dahan, Olfa Mzoughi, Fahima Hajjej, Praneet Saurabh, Kaamran RaahemifarList of authors in order
- Landing page
-
https://doi.org/10.3390/electronics12061384Publisher landing page
- PDF URL
-
https://www.mdpi.com/2079-9292/12/6/1384/pdf?version=1681115117Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2079-9292/12/6/1384/pdf?version=1681115117Direct OA link when available
- Concepts
-
Cluster analysis, Computer science, Energy consumption, Overhead (engineering), Network packet, Enhanced Data Rates for GSM Evolution, Path (computing), Artificial intelligence, Energy (signal processing), Process (computing), Efficient energy use, Data mining, Convolutional neural network, Cluster (spacecraft), Artificial neural network, Pattern recognition (psychology), Engineering, Computer network, Mathematics, Operating system, Electrical engineering, StatisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
18Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 12, 2023: 2Per-year citation counts (last 5 years)
- References (count)
-
40Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4324140942 |
|---|---|
| doi | https://doi.org/10.3390/electronics12061384 |
| ids.doi | https://doi.org/10.3390/electronics12061384 |
| ids.openalex | https://openalex.org/W4324140942 |
| fwci | 7.91194125 |
| type | article |
| title | A Hybrid Deep Learning Model Using CNN and K-Mean Clustering for Energy Efficient Modelling in Mobile EdgeIoT |
| biblio.issue | 6 |
| biblio.volume | 12 |
| biblio.last_page | 1384 |
| biblio.first_page | 1384 |
| topics[0].id | https://openalex.org/T10273 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | IoT and Edge/Fog Computing |
| topics[1].id | https://openalex.org/T11980 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9746000170707703 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3313 |
| topics[1].subfield.display_name | Transportation |
| topics[1].display_name | Human Mobility and Location-Based Analysis |
| topics[2].id | https://openalex.org/T12238 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.974399983882904 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Green IT and Sustainability |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C73555534 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7458494901657104 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[0].display_name | Cluster analysis |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.72120600938797 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2780165032 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6470275521278381 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q16869822 |
| concepts[2].display_name | Energy consumption |
| concepts[3].id | https://openalex.org/C2779960059 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6283911466598511 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7113681 |
| concepts[3].display_name | Overhead (engineering) |
| concepts[4].id | https://openalex.org/C158379750 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6015498638153076 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q214111 |
| concepts[4].display_name | Network packet |
| concepts[5].id | https://openalex.org/C162307627 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5190832614898682 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q204833 |
| concepts[5].display_name | Enhanced Data Rates for GSM Evolution |
| concepts[6].id | https://openalex.org/C2777735758 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4972980320453644 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q817765 |
| concepts[6].display_name | Path (computing) |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.49188661575317383 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C186370098 |
| concepts[8].level | 2 |
| concepts[8].score | 0.48664721846580505 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q442787 |
| concepts[8].display_name | Energy (signal processing) |
| concepts[9].id | https://openalex.org/C98045186 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4590863287448883 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[9].display_name | Process (computing) |
| concepts[10].id | https://openalex.org/C2742236 |
| concepts[10].level | 2 |
| concepts[10].score | 0.45214492082595825 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q924713 |
| concepts[10].display_name | Efficient energy use |
| concepts[11].id | https://openalex.org/C124101348 |
| concepts[11].level | 1 |
| concepts[11].score | 0.4514150619506836 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[11].display_name | Data mining |
| concepts[12].id | https://openalex.org/C81363708 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4401801824569702 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[12].display_name | Convolutional neural network |
| concepts[13].id | https://openalex.org/C164866538 |
| concepts[13].level | 2 |
| concepts[13].score | 0.43535616993904114 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q367351 |
| concepts[13].display_name | Cluster (spacecraft) |
| concepts[14].id | https://openalex.org/C50644808 |
| concepts[14].level | 2 |
| concepts[14].score | 0.42862457036972046 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[14].display_name | Artificial neural network |
| concepts[15].id | https://openalex.org/C153180895 |
| concepts[15].level | 2 |
| concepts[15].score | 0.34338366985321045 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[15].display_name | Pattern recognition (psychology) |
| concepts[16].id | https://openalex.org/C127413603 |
| concepts[16].level | 0 |
| concepts[16].score | 0.17396634817123413 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[16].display_name | Engineering |
| concepts[17].id | https://openalex.org/C31258907 |
| concepts[17].level | 1 |
| concepts[17].score | 0.1653023660182953 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[17].display_name | Computer network |
| concepts[18].id | https://openalex.org/C33923547 |
| concepts[18].level | 0 |
| concepts[18].score | 0.07948866486549377 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[18].display_name | Mathematics |
| concepts[19].id | https://openalex.org/C111919701 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[19].display_name | Operating system |
| concepts[20].id | https://openalex.org/C119599485 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[20].display_name | Electrical engineering |
| concepts[21].id | https://openalex.org/C105795698 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[21].display_name | Statistics |
| keywords[0].id | https://openalex.org/keywords/cluster-analysis |
| keywords[0].score | 0.7458494901657104 |
| keywords[0].display_name | Cluster analysis |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.72120600938797 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/energy-consumption |
| keywords[2].score | 0.6470275521278381 |
| keywords[2].display_name | Energy consumption |
| keywords[3].id | https://openalex.org/keywords/overhead |
| keywords[3].score | 0.6283911466598511 |
| keywords[3].display_name | Overhead (engineering) |
| keywords[4].id | https://openalex.org/keywords/network-packet |
| keywords[4].score | 0.6015498638153076 |
| keywords[4].display_name | Network packet |
| keywords[5].id | https://openalex.org/keywords/enhanced-data-rates-for-gsm-evolution |
| keywords[5].score | 0.5190832614898682 |
| keywords[5].display_name | Enhanced Data Rates for GSM Evolution |
| keywords[6].id | https://openalex.org/keywords/path |
| keywords[6].score | 0.4972980320453644 |
| keywords[6].display_name | Path (computing) |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.49188661575317383 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/energy |
| keywords[8].score | 0.48664721846580505 |
| keywords[8].display_name | Energy (signal processing) |
| keywords[9].id | https://openalex.org/keywords/process |
| keywords[9].score | 0.4590863287448883 |
| keywords[9].display_name | Process (computing) |
| keywords[10].id | https://openalex.org/keywords/efficient-energy-use |
| keywords[10].score | 0.45214492082595825 |
| keywords[10].display_name | Efficient energy use |
| keywords[11].id | https://openalex.org/keywords/data-mining |
| keywords[11].score | 0.4514150619506836 |
| keywords[11].display_name | Data mining |
| keywords[12].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[12].score | 0.4401801824569702 |
| keywords[12].display_name | Convolutional neural network |
| keywords[13].id | https://openalex.org/keywords/cluster |
| keywords[13].score | 0.43535616993904114 |
| keywords[13].display_name | Cluster (spacecraft) |
| keywords[14].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[14].score | 0.42862457036972046 |
| keywords[14].display_name | Artificial neural network |
| keywords[15].id | https://openalex.org/keywords/pattern-recognition |
| keywords[15].score | 0.34338366985321045 |
| keywords[15].display_name | Pattern recognition (psychology) |
| keywords[16].id | https://openalex.org/keywords/engineering |
| keywords[16].score | 0.17396634817123413 |
| keywords[16].display_name | Engineering |
| keywords[17].id | https://openalex.org/keywords/computer-network |
| keywords[17].score | 0.1653023660182953 |
| keywords[17].display_name | Computer network |
| keywords[18].id | https://openalex.org/keywords/mathematics |
| keywords[18].score | 0.07948866486549377 |
| keywords[18].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.3390/electronics12061384 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210202905 |
| locations[0].source.issn | 2079-9292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2079-9292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Electronics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2079-9292/12/6/1384/pdf?version=1681115117 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Electronics |
| locations[0].landing_page_url | https://doi.org/10.3390/electronics12061384 |
| locations[1].id | pmh:oai:figshare.com:article/26830225 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400572 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | OPAL (Open@LaTrobe) (La Trobe University) |
| locations[1].source.host_organization | https://openalex.org/I196829312 |
| locations[1].source.host_organization_name | La Trobe University |
| locations[1].source.host_organization_lineage | https://openalex.org/I196829312 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://figshare.com/articles/journal_contribution/A_Hybrid_Deep_Learning_Model_Using_CNN_and_K-Mean_Clustering_for_Energy_Efficient_Modelling_in_Mobile_EdgeIoT/26830225 |
| locations[2].id | pmh:oai:mdpi.com:/2079-9292/12/6/1384/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Electronics; Volume 12; Issue 6; Pages: 1384 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/electronics12061384 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5012816906 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4165-3959 |
| authorships[0].author.display_name | Dhananjay Bisen |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I9747756 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Information Technology, Madhav Institute of Technology and Science, Gwalior 474005, Madhya Pradesh, India |
| authorships[0].institutions[0].id | https://openalex.org/I9747756 |
| authorships[0].institutions[0].ror | https://ror.org/008b3ap06 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I9747756 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Atal Bihari Vajpayee Indian Institute of Information Technology and Management |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dhananjay Bisen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Information Technology, Madhav Institute of Technology and Science, Gwalior 474005, Madhya Pradesh, India |
| authorships[1].author.id | https://openalex.org/A5039191048 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6073-3773 |
| authorships[1].author.display_name | Umesh Kumar Lilhore |
| authorships[1].countries | IN, US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I79516672 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computing, University of Louisiana, Lafayette, LA 70504, USA |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I101407740 |
| authorships[1].affiliations[1].raw_affiliation_string | Department of Computer Science and Engineering, Chandigarh University, Mohali 140413, Punjab, India |
| authorships[1].institutions[0].id | https://openalex.org/I101407740 |
| authorships[1].institutions[0].ror | https://ror.org/05t4pvx35 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I101407740 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Chandigarh University |
| authorships[1].institutions[1].id | https://openalex.org/I79516672 |
| authorships[1].institutions[1].ror | https://ror.org/01x8rc503 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I2799628689, https://openalex.org/I79516672 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | University of Louisiana at Lafayette |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Umesh Kumar Lilhore |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science and Engineering, Chandigarh University, Mohali 140413, Punjab, India, School of Computing, University of Louisiana, Lafayette, LA 70504, USA |
| authorships[2].author.id | https://openalex.org/A5032558763 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6801-6138 |
| authorships[2].author.display_name | Poongodi Manoharan |
| authorships[2].countries | QA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210144839, https://openalex.org/I92528248 |
| authorships[2].affiliations[0].raw_affiliation_string | Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 5825, Qatar |
| authorships[2].institutions[0].id | https://openalex.org/I4210144839 |
| authorships[2].institutions[0].ror | https://ror.org/03eyq4y97 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210144839 |
| authorships[2].institutions[0].country_code | QA |
| authorships[2].institutions[0].display_name | Hamad bin Khalifa University |
| authorships[2].institutions[1].id | https://openalex.org/I92528248 |
| authorships[2].institutions[1].ror | https://ror.org/01cawbq05 |
| authorships[2].institutions[1].type | nonprofit |
| authorships[2].institutions[1].lineage | https://openalex.org/I92528248 |
| authorships[2].institutions[1].country_code | QA |
| authorships[2].institutions[1].display_name | Qatar Foundation |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Poongodi Manoharan |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 5825, Qatar |
| authorships[3].author.id | https://openalex.org/A5072605553 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5975-0696 |
| authorships[3].author.display_name | Fadl Dahan |
| authorships[3].countries | SA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I142608572 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Management Information Systems, College of Business Administration, Hawtat Bani Tamim, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia |
| authorships[3].institutions[0].id | https://openalex.org/I142608572 |
| authorships[3].institutions[0].ror | https://ror.org/04jt46d36 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I142608572 |
| authorships[3].institutions[0].country_code | SA |
| authorships[3].institutions[0].display_name | Prince Sattam Bin Abdulaziz University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Fadl Dahan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Management Information Systems, College of Business Administration, Hawtat Bani Tamim, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia |
| authorships[4].author.id | https://openalex.org/A5008394194 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8758-9740 |
| authorships[4].author.display_name | Olfa Mzoughi |
| authorships[4].countries | SA |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I142608572 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Computer Sciences, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia |
| authorships[4].institutions[0].id | https://openalex.org/I142608572 |
| authorships[4].institutions[0].ror | https://ror.org/04jt46d36 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I142608572 |
| authorships[4].institutions[0].country_code | SA |
| authorships[4].institutions[0].display_name | Prince Sattam Bin Abdulaziz University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Olfa Mzoughi |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Computer Sciences, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia |
| authorships[5].author.id | https://openalex.org/A5078943371 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-1709-5790 |
| authorships[5].author.display_name | Fahima Hajjej |
| authorships[5].countries | SA |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I106778892 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia |
| authorships[5].institutions[0].id | https://openalex.org/I106778892 |
| authorships[5].institutions[0].ror | https://ror.org/05b0cyh02 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I106778892 |
| authorships[5].institutions[0].country_code | SA |
| authorships[5].institutions[0].display_name | Princess Nourah bint Abdulrahman University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Fahima Hajjej |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia |
| authorships[6].author.id | https://openalex.org/A5046363887 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-3782-4279 |
| authorships[6].author.display_name | Praneet Saurabh |
| authorships[6].countries | IN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I164861460 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Manipal University, Jaipur 303007, Rajasthan, India |
| authorships[6].institutions[0].id | https://openalex.org/I164861460 |
| authorships[6].institutions[0].ror | https://ror.org/02xzytt36 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I164861460 |
| authorships[6].institutions[0].country_code | IN |
| authorships[6].institutions[0].display_name | Manipal Academy of Higher Education |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Praneet Saurabh |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Computer Science and Engineering, Manipal University, Jaipur 303007, Rajasthan, India |
| authorships[7].author.id | https://openalex.org/A5042529202 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-9835-7897 |
| authorships[7].author.display_name | Kaamran Raahemifar |
| authorships[7].countries | CA, US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I151746483 |
| authorships[7].affiliations[0].raw_affiliation_string | School of Optometry and Vision Science, Faculty of Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I130769515 |
| authorships[7].affiliations[1].raw_affiliation_string | Data Science and Artificial Intelligence Program, College of Information Sciences and Technology (IST), Penn State University, State College, PA 16801, USA |
| authorships[7].affiliations[2].institution_ids | https://openalex.org/I151746483 |
| authorships[7].affiliations[2].raw_affiliation_string | Faculty of Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada |
| authorships[7].institutions[0].id | https://openalex.org/I151746483 |
| authorships[7].institutions[0].ror | https://ror.org/01aff2v68 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I151746483 |
| authorships[7].institutions[0].country_code | CA |
| authorships[7].institutions[0].display_name | University of Waterloo |
| authorships[7].institutions[1].id | https://openalex.org/I130769515 |
| authorships[7].institutions[1].ror | https://ror.org/04p491231 |
| authorships[7].institutions[1].type | education |
| authorships[7].institutions[1].lineage | https://openalex.org/I130769515 |
| authorships[7].institutions[1].country_code | US |
| authorships[7].institutions[1].display_name | Pennsylvania State University |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Kaamran Raahemifar |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Data Science and Artificial Intelligence Program, College of Information Sciences and Technology (IST), Penn State University, State College, PA 16801, USA, Faculty of Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada, School of Optometry and Vision Science, Faculty of Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2079-9292/12/6/1384/pdf?version=1681115117 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Hybrid Deep Learning Model Using CNN and K-Mean Clustering for Energy Efficient Modelling in Mobile EdgeIoT |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10273 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | IoT and Edge/Fog Computing |
| related_works | https://openalex.org/W4293226380, https://openalex.org/W4321487865, https://openalex.org/W4313906399, https://openalex.org/W4391266461, https://openalex.org/W2590798552, https://openalex.org/W2811106690, https://openalex.org/W4239306820, https://openalex.org/W179829755, https://openalex.org/W2590022098, https://openalex.org/W1993210935 |
| cited_by_count | 18 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 12 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/electronics12061384 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210202905 |
| best_oa_location.source.issn | 2079-9292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2079-9292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Electronics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2079-9292/12/6/1384/pdf?version=1681115117 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Electronics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/electronics12061384 |
| primary_location.id | doi:10.3390/electronics12061384 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210202905 |
| primary_location.source.issn | 2079-9292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2079-9292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Electronics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2079-9292/12/6/1384/pdf?version=1681115117 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Electronics |
| primary_location.landing_page_url | https://doi.org/10.3390/electronics12061384 |
| publication_date | 2023-03-14 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3186385855, https://openalex.org/W3208325364, https://openalex.org/W4205730764, https://openalex.org/W3142867684, https://openalex.org/W2608841173, https://openalex.org/W4285250327, https://openalex.org/W2943272385, https://openalex.org/W2947645764, https://openalex.org/W2802331610, https://openalex.org/W3210645152, https://openalex.org/W3032966580, https://openalex.org/W3089190064, https://openalex.org/W2963644017, https://openalex.org/W2994270777, https://openalex.org/W2511425482, https://openalex.org/W4296819773, https://openalex.org/W2966753637, https://openalex.org/W3137932838, https://openalex.org/W2794157223, https://openalex.org/W3093942750, https://openalex.org/W4206573673, https://openalex.org/W4295183066, https://openalex.org/W2887470351, https://openalex.org/W3048486781, https://openalex.org/W3183751127, https://openalex.org/W3213738981, https://openalex.org/W2984841769, https://openalex.org/W2912348842, https://openalex.org/W4212853935, https://openalex.org/W6800800971, https://openalex.org/W4285215613, https://openalex.org/W2793901783, https://openalex.org/W3174816388, https://openalex.org/W3200723785, https://openalex.org/W2914261331, https://openalex.org/W3015325725, https://openalex.org/W3213894035, https://openalex.org/W4295736419, https://openalex.org/W3144235125, https://openalex.org/W3197519661 |
| referenced_works_count | 40 |
| abstract_inverted_index.a | 30, 38, 50, 60, 73, 115, 148, 165, 198 |
| abstract_inverted_index.CD | 240 |
| abstract_inverted_index.In | 0, 144 |
| abstract_inverted_index.It | 90 |
| abstract_inverted_index.We | 58 |
| abstract_inverted_index.an | 10 |
| abstract_inverted_index.be | 178 |
| abstract_inverted_index.by | 19, 118 |
| abstract_inverted_index.in | 16, 85, 140, 237 |
| abstract_inverted_index.is | 6, 235 |
| abstract_inverted_index.it | 5 |
| abstract_inverted_index.of | 72, 95, 123, 192, 226, 239 |
| abstract_inverted_index.on | 44 |
| abstract_inverted_index.to | 8, 62, 88, 100, 131, 163, 183, 253 |
| abstract_inverted_index.CNN | 61, 199 |
| abstract_inverted_index.MKM | 77 |
| abstract_inverted_index.The | 76, 111, 173, 189, 203, 224 |
| abstract_inverted_index.all | 120 |
| abstract_inverted_index.and | 25, 37, 49, 67, 105, 151, 181, 185, 211, 250 |
| abstract_inverted_index.are | 218 |
| abstract_inverted_index.can | 14 |
| abstract_inverted_index.for | 33, 56, 137, 160 |
| abstract_inverted_index.has | 79 |
| abstract_inverted_index.one | 82 |
| abstract_inverted_index.our | 227 |
| abstract_inverted_index.the | 21, 64, 68, 93, 102, 108, 121, 133, 161, 171, 187, 193, 221, 231 |
| abstract_inverted_index.MEC, | 145 |
| abstract_inverted_index.MEC. | 57 |
| abstract_inverted_index.This | 27, 127 |
| abstract_inverted_index.also | 91 |
| abstract_inverted_index.and, | 168 |
| abstract_inverted_index.best | 22 |
| abstract_inverted_index.cost | 124 |
| abstract_inverted_index.each | 86 |
| abstract_inverted_index.edge | 2 |
| abstract_inverted_index.form | 164 |
| abstract_inverted_index.have | 147 |
| abstract_inverted_index.head | 39, 84, 167 |
| abstract_inverted_index.loss | 245 |
| abstract_inverted_index.more | 80 |
| abstract_inverted_index.most | 69 |
| abstract_inverted_index.must | 177 |
| abstract_inverted_index.over | 220 |
| abstract_inverted_index.path | 24 |
| abstract_inverted_index.than | 81 |
| abstract_inverted_index.that | 13, 230 |
| abstract_inverted_index.this | 157, 201 |
| abstract_inverted_index.with | 197 |
| abstract_inverted_index.(MKM) | 54 |
| abstract_inverted_index.based | 43 |
| abstract_inverted_index.delay | 106 |
| abstract_inverted_index.heads | 176 |
| abstract_inverted_index.helps | 99, 130 |
| abstract_inverted_index.lead. | 89 |
| abstract_inverted_index.model | 32, 113, 234 |
| abstract_inverted_index.rate, | 246 |
| abstract_inverted_index.task. | 75 |
| abstract_inverted_index.their | 154 |
| abstract_inverted_index.train | 132 |
| abstract_inverted_index.which | 98, 135 |
| abstract_inverted_index.(CNNs) | 48 |
| abstract_inverted_index.(MEC), | 4 |
| abstract_inverted_index.(WCA), | 210 |
| abstract_inverted_index.allows | 136 |
| abstract_inverted_index.change | 153 |
| abstract_inverted_index.during | 107 |
| abstract_inverted_index.energy | 18, 103, 142, 241 |
| abstract_inverted_index.hybrid | 31, 233 |
| abstract_inverted_index.k-mean | 52 |
| abstract_inverted_index.method | 55, 78, 196 |
| abstract_inverted_index.mobile | 1 |
| abstract_inverted_index.model, | 134 |
| abstract_inverted_index.nature | 150 |
| abstract_inverted_index.neural | 46 |
| abstract_inverted_index.number | 94 |
| abstract_inverted_index.packet | 244, 247 |
| abstract_inverted_index.ratio, | 249 |
| abstract_inverted_index.secure | 213 |
| abstract_inverted_index.tested | 219 |
| abstract_inverted_index.usage. | 143 |
| abstract_inverted_index.applied | 182 |
| abstract_inverted_index.aspects | 122, 238 |
| abstract_inverted_index.cluster | 35, 83, 87, 166, 175 |
| abstract_inverted_index.creates | 158 |
| abstract_inverted_index.cycles, | 97 |
| abstract_inverted_index.dataset | 117, 129 |
| abstract_inverted_index.dynamic | 149 |
| abstract_inverted_index.fulfils | 200 |
| abstract_inverted_index.hurdles | 159 |
| abstract_inverted_index.k-means | 195 |
| abstract_inverted_index.limited | 17 |
| abstract_inverted_index.method, | 205 |
| abstract_inverted_index.network | 222 |
| abstract_inverted_index.optimum | 11, 141 |
| abstract_inverted_index.pairing | 191 |
| abstract_inverted_index.perform | 15 |
| abstract_inverted_index.reduces | 92 |
| abstract_inverted_index.(AB-SEP) | 217 |
| abstract_inverted_index.(E-CFSA) | 41 |
| abstract_inverted_index.abandons | 170 |
| abstract_inverted_index.approach | 216 |
| abstract_inverted_index.cluster. | 172 |
| abstract_inverted_index.clusters | 146, 162 |
| abstract_inverted_index.compared | 252 |
| abstract_inverted_index.covering | 119 |
| abstract_inverted_index.dataset. | 223 |
| abstract_inverted_index.delivery | 248 |
| abstract_inverted_index.enhanced | 214 |
| abstract_inverted_index.existing | 206, 254 |
| abstract_inverted_index.finally, | 169 |
| abstract_inverted_index.findings | 225 |
| abstract_inverted_index.function | 125 |
| abstract_inverted_index.maintain | 184 |
| abstract_inverted_index.modified | 51, 194 |
| abstract_inverted_index.networks | 47 |
| abstract_inverted_index.overcome | 101 |
| abstract_inverted_index.process. | 110 |
| abstract_inverted_index.proposed | 29, 112, 190, 204, 232 |
| abstract_inverted_index.research | 28 |
| abstract_inverted_index.selected | 174 |
| abstract_inverted_index.solution | 12 |
| abstract_inverted_index.specific | 74 |
| abstract_inverted_index.strategy | 66 |
| abstract_inverted_index.training | 116, 128 |
| abstract_inverted_index.utilised | 59 |
| abstract_inverted_index.weighted | 207 |
| abstract_inverted_index.algorithm | 42, 209 |
| abstract_inverted_index.clusters. | 188 |
| abstract_inverted_index.computing | 3 |
| abstract_inverted_index.correctly | 180 |
| abstract_inverted_index.determine | 63 |
| abstract_inverted_index.difficult | 7 |
| abstract_inverted_index.efficient | 70, 138 |
| abstract_inverted_index.formation | 36 |
| abstract_inverted_index.location. | 155 |
| abstract_inverted_index.overhead, | 243 |
| abstract_inverted_index.promising | 236 |
| abstract_inverted_index.recognise | 9 |
| abstract_inverted_index.selecting | 20 |
| abstract_inverted_index.selection | 40 |
| abstract_inverted_index.supervise | 186 |
| abstract_inverted_index.Sometimes, | 156 |
| abstract_inverted_index.clustering | 53, 208 |
| abstract_inverted_index.determines | 114 |
| abstract_inverted_index.experiment | 228 |
| abstract_inverted_index.frequently | 152 |
| abstract_inverted_index.objective. | 202 |
| abstract_inverted_index.recognised | 179 |
| abstract_inverted_index.throughput | 251 |
| abstract_inverted_index.agent-based | 212 |
| abstract_inverted_index.approaches. | 255 |
| abstract_inverted_index.components. | 26 |
| abstract_inverted_index.consumption | 104 |
| abstract_inverted_index.demonstrate | 229 |
| abstract_inverted_index.performance | 215 |
| abstract_inverted_index.calculation. | 126 |
| abstract_inverted_index.consumption, | 242 |
| abstract_inverted_index.partitioning | 71 |
| abstract_inverted_index.reclustering | 96, 109 |
| abstract_inverted_index.communication | 23 |
| abstract_inverted_index.convolutional | 45 |
| abstract_inverted_index.decision-making | 139 |
| abstract_inverted_index.energy-efficient | 34 |
| abstract_inverted_index.best-transferring | 65 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5032558763 |
| countries_distinct_count | 5 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I4210144839, https://openalex.org/I92528248 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.9100000262260437 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.94548233 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |