A Hybrid Evolutionary Fuzzy Ensemble Approach for Accurate Software Defect Prediction Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.20944/preprints202503.0259.v1
Software defect prediction aims to identify defect-prone modules before testing, reducing costs and duration. Machine learning (ML) techniques are widely used to develop predictive models for classifying defective software components. However, high-dimensional training datasets often degrade classification accuracy and precision due to irrelevant or redundant features. To address this, effective feature selection is crucial, but it poses an NP-hard challenge that can be efficiently tackled using heuristic algorithms. This study introduces a Binary Multi-Objective Starfish Optimizer (BMOSFO) for optimal feature selection, enhancing classification accuracy and precision. The proposed BMOSFO balances two conflicting objectives: minimizing the number of selected features and maximizing classification performance. A Choquet Fuzzy Integral-based Ensemble Classifier is then employed to further enhance prediction reliability by aggregating multiple classifiers. The effectiveness of the proposed approach is validated using five real-world NASA benchmark datasets, demonstrating superior performance compared to traditional classifiers. Experimental results reveal that key software metrics—such as design complexity, operators and operands count, lines of code, and number of branches—significantly influence defect prediction. The findings confirm that BMOSFO not only reduces feature dimensionality but also enhances classification performance, providing a robust and interpretable solution for software defect prediction. This approach shows strong potential for generalization to other high-dimensional classification tasks.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.20944/preprints202503.0259.v1
- https://www.preprints.org/frontend/manuscript/a4cf3fe1e48cf6eaad62baba72bd75b4/download_pub
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408176819
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408176819Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.20944/preprints202503.0259.v1Digital Object Identifier
- Title
-
A Hybrid Evolutionary Fuzzy Ensemble Approach for Accurate Software Defect PredictionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-06Full publication date if available
- Authors
-
Raghunath Dey, Jayashree Piri, Biswaranjan Acharya, Pragyan Paramita Das, Vassilis C. Gerogiannis, Andreas KanavosList of authors in order
- Landing page
-
https://doi.org/10.20944/preprints202503.0259.v1Publisher landing page
- PDF URL
-
https://www.preprints.org/frontend/manuscript/a4cf3fe1e48cf6eaad62baba72bd75b4/download_pubDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.preprints.org/frontend/manuscript/a4cf3fe1e48cf6eaad62baba72bd75b4/download_pubDirect OA link when available
- Concepts
-
Computer science, Fuzzy logic, Software, Artificial intelligence, Machine learning, Data mining, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408176819 |
|---|---|
| doi | https://doi.org/10.20944/preprints202503.0259.v1 |
| ids.doi | https://doi.org/10.20944/preprints202503.0259.v1 |
| ids.openalex | https://openalex.org/W4408176819 |
| fwci | 9.66367325 |
| type | preprint |
| title | A Hybrid Evolutionary Fuzzy Ensemble Approach for Accurate Software Defect Prediction |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10260 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Software Engineering Research |
| topics[1].id | https://openalex.org/T12423 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9467999935150146 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1712 |
| topics[1].subfield.display_name | Software |
| topics[1].display_name | Software Reliability and Analysis Research |
| topics[2].id | https://openalex.org/T10430 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9276999831199646 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1710 |
| topics[2].subfield.display_name | Information Systems |
| topics[2].display_name | Software Engineering Techniques and Practices |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6163920760154724 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C58166 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5167102813720703 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q224821 |
| concepts[1].display_name | Fuzzy logic |
| concepts[2].id | https://openalex.org/C2777904410 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5043367147445679 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7397 |
| concepts[2].display_name | Software |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4287929832935333 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4076511561870575 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C124101348 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3392239212989807 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[5].display_name | Data mining |
| concepts[6].id | https://openalex.org/C199360897 |
| concepts[6].level | 1 |
| concepts[6].score | 0.08938562870025635 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[6].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6163920760154724 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/fuzzy-logic |
| keywords[1].score | 0.5167102813720703 |
| keywords[1].display_name | Fuzzy logic |
| keywords[2].id | https://openalex.org/keywords/software |
| keywords[2].score | 0.5043367147445679 |
| keywords[2].display_name | Software |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.4287929832935333 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.4076511561870575 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/data-mining |
| keywords[5].score | 0.3392239212989807 |
| keywords[5].display_name | Data mining |
| keywords[6].id | https://openalex.org/keywords/programming-language |
| keywords[6].score | 0.08938562870025635 |
| keywords[6].display_name | Programming language |
| language | en |
| locations[0].id | doi:10.20944/preprints202503.0259.v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S6309402219 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Preprints.org |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.preprints.org/frontend/manuscript/a4cf3fe1e48cf6eaad62baba72bd75b4/download_pub |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.20944/preprints202503.0259.v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5081610700 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0295-8189 |
| authorships[0].author.display_name | Raghunath Dey |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Raghunath Dey |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5037359050 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0360-0426 |
| authorships[1].author.display_name | Jayashree Piri |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jayashree Piri |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5031377837 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6506-9207 |
| authorships[2].author.display_name | Biswaranjan Acharya |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Biswaranjan Acharya |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5021313534 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3526-1150 |
| authorships[3].author.display_name | Pragyan Paramita Das |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Pragyan Paramita Das |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5046194597 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9895-7606 |
| authorships[4].author.display_name | Vassilis C. Gerogiannis |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Vassilis C. Gerogiannis |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5004664070 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-9964-4134 |
| authorships[5].author.display_name | Andreas Kanavos |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Andreas Kanavos |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.preprints.org/frontend/manuscript/a4cf3fe1e48cf6eaad62baba72bd75b4/download_pub |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Hybrid Evolutionary Fuzzy Ensemble Approach for Accurate Software Defect Prediction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10260 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Software Engineering Research |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W4387369504, https://openalex.org/W3046775127, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W3107602296, https://openalex.org/W4364306694, https://openalex.org/W4312192474 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.20944/preprints202503.0259.v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S6309402219 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Preprints.org |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.preprints.org/frontend/manuscript/a4cf3fe1e48cf6eaad62baba72bd75b4/download_pub |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.20944/preprints202503.0259.v1 |
| primary_location.id | doi:10.20944/preprints202503.0259.v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S6309402219 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Preprints.org |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.preprints.org/frontend/manuscript/a4cf3fe1e48cf6eaad62baba72bd75b4/download_pub |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.20944/preprints202503.0259.v1 |
| publication_date | 2025-03-06 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 103 |
| abstract_inverted_index.a | 71, 182 |
| abstract_inverted_index.To | 46 |
| abstract_inverted_index.an | 57 |
| abstract_inverted_index.as | 149 |
| abstract_inverted_index.be | 62 |
| abstract_inverted_index.by | 117 |
| abstract_inverted_index.is | 52, 109, 127 |
| abstract_inverted_index.it | 55 |
| abstract_inverted_index.of | 96, 123, 157, 161 |
| abstract_inverted_index.or | 43 |
| abstract_inverted_index.to | 4, 21, 41, 112, 139, 198 |
| abstract_inverted_index.The | 86, 121, 166 |
| abstract_inverted_index.and | 12, 38, 84, 99, 153, 159, 184 |
| abstract_inverted_index.are | 18 |
| abstract_inverted_index.but | 54, 176 |
| abstract_inverted_index.can | 61 |
| abstract_inverted_index.due | 40 |
| abstract_inverted_index.for | 25, 77, 187, 196 |
| abstract_inverted_index.key | 146 |
| abstract_inverted_index.not | 171 |
| abstract_inverted_index.the | 94, 124 |
| abstract_inverted_index.two | 90 |
| abstract_inverted_index.(ML) | 16 |
| abstract_inverted_index.NASA | 132 |
| abstract_inverted_index.This | 68, 191 |
| abstract_inverted_index.aims | 3 |
| abstract_inverted_index.also | 177 |
| abstract_inverted_index.five | 130 |
| abstract_inverted_index.only | 172 |
| abstract_inverted_index.that | 60, 145, 169 |
| abstract_inverted_index.then | 110 |
| abstract_inverted_index.used | 20 |
| abstract_inverted_index.Fuzzy | 105 |
| abstract_inverted_index.code, | 158 |
| abstract_inverted_index.costs | 11 |
| abstract_inverted_index.lines | 156 |
| abstract_inverted_index.often | 34 |
| abstract_inverted_index.other | 199 |
| abstract_inverted_index.poses | 56 |
| abstract_inverted_index.shows | 193 |
| abstract_inverted_index.study | 69 |
| abstract_inverted_index.this, | 48 |
| abstract_inverted_index.using | 65, 129 |
| abstract_inverted_index.BMOSFO | 88, 170 |
| abstract_inverted_index.Binary | 72 |
| abstract_inverted_index.before | 8 |
| abstract_inverted_index.count, | 155 |
| abstract_inverted_index.defect | 1, 164, 189 |
| abstract_inverted_index.design | 150 |
| abstract_inverted_index.models | 24 |
| abstract_inverted_index.number | 95, 160 |
| abstract_inverted_index.reveal | 144 |
| abstract_inverted_index.robust | 183 |
| abstract_inverted_index.strong | 194 |
| abstract_inverted_index.tasks. | 202 |
| abstract_inverted_index.widely | 19 |
| abstract_inverted_index.Choquet | 104 |
| abstract_inverted_index.Machine | 14 |
| abstract_inverted_index.NP-hard | 58 |
| abstract_inverted_index.address | 47 |
| abstract_inverted_index.confirm | 168 |
| abstract_inverted_index.degrade | 35 |
| abstract_inverted_index.develop | 22 |
| abstract_inverted_index.enhance | 114 |
| abstract_inverted_index.feature | 50, 79, 174 |
| abstract_inverted_index.further | 113 |
| abstract_inverted_index.modules | 7 |
| abstract_inverted_index.optimal | 78 |
| abstract_inverted_index.reduces | 173 |
| abstract_inverted_index.results | 143 |
| abstract_inverted_index.tackled | 64 |
| abstract_inverted_index.(BMOSFO) | 76 |
| abstract_inverted_index.Ensemble | 107 |
| abstract_inverted_index.However, | 30 |
| abstract_inverted_index.Software | 0 |
| abstract_inverted_index.Starfish | 74 |
| abstract_inverted_index.accuracy | 37, 83 |
| abstract_inverted_index.approach | 126, 192 |
| abstract_inverted_index.balances | 89 |
| abstract_inverted_index.compared | 138 |
| abstract_inverted_index.crucial, | 53 |
| abstract_inverted_index.datasets | 33 |
| abstract_inverted_index.employed | 111 |
| abstract_inverted_index.enhances | 178 |
| abstract_inverted_index.features | 98 |
| abstract_inverted_index.findings | 167 |
| abstract_inverted_index.identify | 5 |
| abstract_inverted_index.learning | 15 |
| abstract_inverted_index.multiple | 119 |
| abstract_inverted_index.operands | 154 |
| abstract_inverted_index.proposed | 87, 125 |
| abstract_inverted_index.reducing | 10 |
| abstract_inverted_index.selected | 97 |
| abstract_inverted_index.software | 28, 147, 188 |
| abstract_inverted_index.solution | 186 |
| abstract_inverted_index.superior | 136 |
| abstract_inverted_index.testing, | 9 |
| abstract_inverted_index.training | 32 |
| abstract_inverted_index.Optimizer | 75 |
| abstract_inverted_index.benchmark | 133 |
| abstract_inverted_index.challenge | 59 |
| abstract_inverted_index.datasets, | 134 |
| abstract_inverted_index.defective | 27 |
| abstract_inverted_index.duration. | 13 |
| abstract_inverted_index.effective | 49 |
| abstract_inverted_index.enhancing | 81 |
| abstract_inverted_index.features. | 45 |
| abstract_inverted_index.heuristic | 66 |
| abstract_inverted_index.influence | 163 |
| abstract_inverted_index.operators | 152 |
| abstract_inverted_index.potential | 195 |
| abstract_inverted_index.precision | 39 |
| abstract_inverted_index.providing | 181 |
| abstract_inverted_index.redundant | 44 |
| abstract_inverted_index.selection | 51 |
| abstract_inverted_index.validated | 128 |
| abstract_inverted_index.Classifier | 108 |
| abstract_inverted_index.introduces | 70 |
| abstract_inverted_index.irrelevant | 42 |
| abstract_inverted_index.maximizing | 100 |
| abstract_inverted_index.minimizing | 93 |
| abstract_inverted_index.precision. | 85 |
| abstract_inverted_index.prediction | 2, 115 |
| abstract_inverted_index.predictive | 23 |
| abstract_inverted_index.real-world | 131 |
| abstract_inverted_index.selection, | 80 |
| abstract_inverted_index.techniques | 17 |
| abstract_inverted_index.aggregating | 118 |
| abstract_inverted_index.algorithms. | 67 |
| abstract_inverted_index.classifying | 26 |
| abstract_inverted_index.complexity, | 151 |
| abstract_inverted_index.components. | 29 |
| abstract_inverted_index.conflicting | 91 |
| abstract_inverted_index.efficiently | 63 |
| abstract_inverted_index.objectives: | 92 |
| abstract_inverted_index.performance | 137 |
| abstract_inverted_index.prediction. | 165, 190 |
| abstract_inverted_index.reliability | 116 |
| abstract_inverted_index.traditional | 140 |
| abstract_inverted_index.Experimental | 142 |
| abstract_inverted_index.classifiers. | 120, 141 |
| abstract_inverted_index.defect-prone | 6 |
| abstract_inverted_index.performance, | 180 |
| abstract_inverted_index.performance. | 102 |
| abstract_inverted_index.demonstrating | 135 |
| abstract_inverted_index.effectiveness | 122 |
| abstract_inverted_index.interpretable | 185 |
| abstract_inverted_index.Integral-based | 106 |
| abstract_inverted_index.classification | 36, 82, 101, 179, 201 |
| abstract_inverted_index.dimensionality | 175 |
| abstract_inverted_index.generalization | 197 |
| abstract_inverted_index.metrics—such | 148 |
| abstract_inverted_index.Multi-Objective | 73 |
| abstract_inverted_index.high-dimensional | 31, 200 |
| abstract_inverted_index.branches—significantly | 162 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.92502926 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |